
CS 47
Beginning iPhone Application Development

Week 8: Notifications, Audio/Video

Thursday, March 11, 2010

Office Hours

• Saturday, March 13th

• 10am-11am

• Redrock Cafe, 2nd floor

Thursday, March 11, 2010

Agenda

• Some Tips

• AVFoundation

• AudioToolkit

• MPMoviePlayerController

• MPMusicPlayerController

Thursday, March 11, 2010

Importing Libraries

• Xcode targets the i386 architecture for the
simulator, and ARM for the device

• Your project can make use of third-party
library/framework/SDKs - they should
provide support for both architectures

• Make sure you import the right
architecture for your target

Thursday, March 11, 2010

Importing Libraries

• Use the $PLATFORM_NAME variable in
include paths (e.g. in the Library Search
Paths field or the additional SDKs field)

Thursday, March 11, 2010

Importing Libraries

• Or just include both at once

• You’ll get a warning about the “wrong”
architecture, but you can ignore it

Thursday, March 11, 2010

The ‘id’ Return

• Many functions have an ‘id’ return type, e.g.
[NSDictionary objectForKey:..]

• This means that it can return any
Objective-C class! The compiler will not
do type checking
// An NSNumber value is returned and put in an NSString
// NO COMPILER WARNING
NSString *myString = [dic objectForKey:@”Some_NSNumber”];

• You will get a runtime exception if you try
to call an NSString selector on the object

Thursday, March 11, 2010

The ‘id’ Return

• In general it’s ok to assume the returned
object will be a certain class, especially if it’s
a documented function

• Just be careful. Use the isKindOfClass
selector or class_getName to interogate an
object if you have to

Thursday, March 11, 2010

Use Backtrace!
• Whenever you get an

EXC_BAD_ACCESS, runtime exception or
any other application crash, be sure to
analyze the backtrace

• Open the debug console (Run->Console,
or Command-Shift-R - enter “bt”

Thursday, March 11, 2010

AVFoundation

• Ok, let’s start with audio!

• There are many different ways to get an
iPhone app to generate and record audio,
but AVFoundation is the best compromise
between simplicity and functionality

• AVAudioPlayer

• AVAudioRecorder

Thursday, March 11, 2010

AVAudioPlayer

• AVAudioPlayer handles the playback of any
type of supported audio file (wav, mp3, etc)
with minimal configuration

• Very easy setup:
NSURL *fileURL = ...; /* Point to audio file */

AVAudioPlayer *player =
 [[AVAudioPlayer initWithContentsOfURL:fileURL error:nil];
 /* Ready to play! */

• (The file has to be on the device!)

Thursday, March 11, 2010

AVAudioPlayer

• You can also load the AVAudioPlayer from
memory

NSData *data = ...; /* binary data of an audio file */

AVAudioPlayer *player =
 [[AVAudioPlayer initWithData:data error:nil];
 /* Ready to play! */

• Good for playing sound clips that are
loaded from a remote source, or playing
dynamically-created files

Thursday, March 11, 2010

AVAudioPlayer

• Each AVAudioPlayer instance can only play a
single audio file!

• That audio file is determined at object-
creation time. You cannot make an
AVAudioPlayer play new audio data after it
has been created

• You need to create an AVAudioPlayer
object for each unique sound

Thursday, March 11, 2010

AVAudioPlayer

• Also holds true for playing multiple
simultaneous instances of the same sound -
each needs its own AVAudioPlayer

• You only need one AVAudioPlayer per
sound if you are ok stopping playback of
existing instances (so only one instance of
each sound is playing at a time)

Thursday, March 11, 2010

AVAudioPlayer

• Simple programmatic playback control
[player play];
[player stop];
[player pause];
[player prepareToPlay]; /* Preloads data */
player.numberOfLoops = ...; /* Set # of loops */

if (player.isPlaying) ... /* Check if we’re active */

player.duration /* How long is the audio? */
player.currentTime /* Current playing offset (RW) */

Thursday, March 11, 2010

AVAudioPlayer

• If you anticipate playing the same sound
multiple times (halting existing playback), do
this to the existing AVAudioPlayer object:
[player stop];
player.currentTime = 0; /* Dynamic time shifting */
[player play];

Thursday, March 11, 2010

AVAudioPlayer

• Each AVAudioPlayer object has individual
control over its own volume

player.volume = 0.5; /* 0.0 to 1.0, r/w */

• You can use this to equalize different audio
clips

• Volume can be set dynamically while the
audio is playing

Thursday, March 11, 2010

AVAudioPlayer

• Get basic audio level data
player.meteringEnabled = YES;
...
while loop {
 [player updateMeters];
 float average = [player averagePowerForChannel:0];
 float peak = [player peakPowerForChannel:0];
}

• Returns dB: -160dB [silent] to 0dB [loud]

• Only turn it on if you need it... needs extra
processing power

Thursday, March 11, 2010

AVAudioPlayer

• Use an AVAudioPlayerDelegate to catch
events (player.delegate = self;)

- audioPlayerDidFinishPlaying:successfully:
- audioPlayerDecodeErrorDidOccur:error:
- audioPlayerBeginInterruption:
- audioPlayerEndInterruption:

Thursday, March 11, 2010

AVAudioPlayer

• The AVAudioPlayer object needs to be
“alive” during the entire sound playback

• It’s setup for easy management of
persistent objects (i.e. if you have an array
of AVAudioPlayers that will sit around for
awhile)

• But what if you just want one-off objects?
(why? memory constraints, simultaneous)

Thursday, March 11, 2010

AVAudioPlayer

• Use the delegate to free the object
{ ...
 player = [[AVAudioPlayer alloc] initWithURL:... error:nil];
 player.delegate = self;
 [player play];
 /* Needs to be released when finished */
...}

- (void) audioPlayerDidFinishPlaying:(AVAudioPlayer*)player
 successfully:(BOOL)success {
 [player autorelease];
}

Thursday, March 11, 2010

AVAudioPlayer

• What if you want multiple AVAudioPlayer
objects to play the same sound more than
once simultaneously, but you also want
persistent objects?

• Create an array of AVAudioPlayer objects
just for that one sound (make sure they all
point to the same NSData object)

Thursday, March 11, 2010

AVAudioPlayer
@interface MyClass : NSObject {
 AVAudioPlayer soundArray[kMaxSimultaneous];
 int currentIndex;
}

@implementation MyClass

- (id) init { ...
 NSData *d = ...; /* Sound data */
 for (int i = 0; i < kMaxSimultaneous; i++) {
 soundArray[i] = [[AVAudioPlayer alloc] initWithData:d error:nil];
 }
...}

- (void) playSound {
 [soundArray[currentIndex] stop];
 soundArray[currentIndex].currentTime = 0;
 [soundArray[currentIndex] play];
 currentIndex = (currentIndex + 1) % kMaxSimultaneous;
}

@end

Thursday, March 11, 2010

AVAudioPlayer

• So what can’t you do with the
AVAudioPlayer?

• Streaming - you need the entire file

• Synchronization - you can’t start audio
at specific times

• If you need these, you’ll have to use
AudioToolkit (cry)

Thursday, March 11, 2010

AVAudioRecorder

• Very similar API to AVAudioPlayer, but used
for recording data onto disk

• Interestingly, there is no way to record into
an NSMutableData object (why not?) - you
have to record onto disk
recorder = [[AVAudioRecorder alloc] initWithURL:...
 settings:...
 error:nil];

Thursday, March 11, 2010

AVAudioRecorder

• The URL must point to a writable file

• Make a path to your document or cache
directories
/* Create recording path */
NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSCachesDirectory, NSUserDomainMask, YES);
NSString *cacheDirectory = [paths objectAtIndex:0];
NSString *filePath =
 [NSString stringWithFormat:@"%@/recording.wav",
 cacheDirectory];
fileURL = [[NSURL alloc] initFileURLWithPath:filePath];

Thursday, March 11, 2010

AVAudioRecorder

• Replaces the ‘play’ selector with ‘record’

• You cannot time shift the recorder
(currentTime is a readonly parameter)

• Similar delegate and level-metering API

Thursday, March 11, 2010

AVAudioRecorder

• Part of the initialization function is a
settings dictionary

/* Record settings for typical WAV file */

NSMutableDictionary *settings = [NSMutableDictionary dictionary];

[settings setObject:[NSNumber numberWithInt:kAudioFormatLinearPCM]
 forKey:AVFormatIDKey];

[settings setObject:[NSNumber numberWithFloat:44100.0]
 forKey:AVSampleRateKey];

Thursday, March 11, 2010

AVAudioRecorder

• When recording is finished (e.g. you call the
stop method), the recorded data will be at
the file URL you specified

• You can use that same URL to play back
the recorded audio, compress it, or send it
up to a remote server

Thursday, March 11, 2010

AudioToolkit

• The AudioToolkit was the original “high
level” audio API in the iPhone SDK

• It was such a nightmare to use that Apple
released AVFoundation for iPhone OS 2.2
to make normal audio tasks easier

• But you still need AudioToolkit to do
streaming and synchronization

Thursday, March 11, 2010

AudioToolkit

 Problem: AudioToolkit will destroy you.

 (We’ll do a brief overview.)

Thursday, March 11, 2010

AudioToolkit

• It’s all about the AudioQueueRef object

• The AudioQueueRef is associated with
several AudioQueueBuffer objects that
make a circular data queue of audio packets

• The AudioQueueRef constantly reads data
from the buffers and sends it to the
hardware

Thursday, March 11, 2010

AudioToolkit

• When the AudioQueueRef has exhausted
data in an AudioQueueBuffer node, it
triggers a callback that needs to refill the
AudioQueueBuffer with new data

Thursday, March 11, 2010

Thursday, March 11, 2010

AudioToolkit

• Where does the audio data come from?

• AudioFileID (disk or memory)

• AudioFileStreamID (streaming)

• Each of the above APIs has a method to get
more data, and understands how to extract
audio data packets from the binary file

Thursday, March 11, 2010

AudioToolkit

• AudioFileID has a traditional pull API
(AudioFileReadPackets) where you simply
read more data from an existing source

• AudioFileStreamID has a “push” API, where
you feed in data as it is streamed to you,
and the AudioFileStreamID triggers a
callback when completed packets have
arrived

Thursday, March 11, 2010

AudioToolkit

• So that’s a really high level description of
the AudioToolkit API.

• Read the documentation for
AudioQueueRef, AudioFileID and
AudioFileStreamID

• Read the Audio Queue Services
Programming Guide for detailed examples

• Streaming example in this week’s demo

Thursday, March 11, 2010

Notifications

• The notification system provides
synchronous message dispatching for
various events

• It’s a lot like the “addTarget” behavior of UI
elements, except that it works for arbitrary
events, and for any type of object

• Used by some of the multimedia APIs

Thursday, March 11, 2010

Notifications

• Notifications are handled by the
NSNotificationCenter object

• You’ll want to get the default global
instance:
NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

Thursday, March 11, 2010

Notifications

• To receive notifications, you need to
register your instance as an observer

/* Called inside your controller class */

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center addObserver:self
 selector:@selector(handleNotification:)
 name:kNotificationIWantToObserve
 object:someObjectThatGeneratesNotifications];

• name or object can be nil (wildcards)

Thursday, March 11, 2010

Notifications

• You should always remove yourself as an
observer during deallocation, or when you
are no longer interested in notifications
[center removeObserver:self]; /* Removes all observations */

[center removeObserver:self
 name:kNotificationIWantToObserve
 object:someObjectThatGeneratesNotifications];

• name or object can be nil (wildcards)

Thursday, March 11, 2010

Notifications

• If you are a notification generator, you can
post arbitrary notifications:
- postNotification:
- postNotificationName:object:
- postNotificationName:object:userInfo:

Thursday, March 11, 2010

Notifications

• The Notification Center will send
notifications to all objects that match
listening parameters

• Messages are posted synchronously!
postNotification: does not return until all
receivers complete their handlers

• Use NSNotificationQueues to send
asynchronous notifications

Thursday, March 11, 2010

Notifications

• You can see how this creates a very loose
“cloud” to send event notifications around
your application - good when you may want
more than one receiver of an event

• You should still favor the protocol/delegate
mechanism for strongly-bonded object
relationships (much more explicit)

Thursday, March 11, 2010

MPMoviePlayerController

• So you want to play a movie in your app?

• Use MPMoviePlayerController

• You can play local or remotely-streamed
movies

Thursday, March 11, 2010

MPMoviePlayerController

• Controller initialization is fairly typical:
MPMoviePlayerController *controller =
 [[MPMoviePlayerController alloc] initWithContentURL:...];

• Setup various properties before you play:
controller.backgroundColor = ...;
controller.scalingMode = ...;
controller.movieControlMode = ...;

Thursday, March 11, 2010

MPMoviePlayerController

• Use the play and stop selectors to
programmatically control playback

• Unlike other view controllers, you do not
add this one to your view hierarchy!

• i.e. do not present this as a modal
view controller

• Calling the play command will automatically
bring up a full-screen player

Thursday, March 11, 2010

MPMoviePlayerController

• So how do you know when the movie is
finished?
/* Assign finish notification handler */
[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayerController];

Thursday, March 11, 2010

MPMoviePlayerController

• Use the notification to release the player
-(void) movieFinishedCallback:(NSNotification*)aNotification {
 /* Grab the movie controller object */
 MPMoviePlayerController* controller = [aNotification object];

 /* Remove notifications */
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:controller];

 /* Release movie controller */
 [controller release];
}

Thursday, March 11, 2010

MPMusicPlayerController

• So what about playing music from the
device’s media library?

• Use MPMusicPlayerController

Thursday, March 11, 2010

MPMusicPlayerController

• You can access the iPod music controller:
MPMusicPlayerController *musicController =
 [MPMusicPlayerController iPodMusicPlayer];

• Any changes you make to the media
playback state of this controller will affect
the iPod controller on the device

Thursday, March 11, 2010

MPMusicPlayerController

• Or you can setup a local media player that
is disconnected from the state of the
device iPod player

MPMusicPlayerController *musicController =
 [MPMusicPlayerController applicationMusicPlayer];

• Allows you to access the media library
without changing user’s generic iPod state

Thursday, March 11, 2010

MPMusicPlayerController

• Unlike the AVAudioPlayer, the
MPMusicPlayerController is designed to
handle playlists (or, what they call Queues)

• Each entry in the playlist is represented by
an MPMediaItem object

• So aside from standard play, pause, stop, it
also provides skipToNextItem and
skipToPreviousItem

Thursday, March 11, 2010

MPMusicPlayerController

• Control playback mode and state

player.repeatMode
player.shuffleMode
player.volume

/* Direct time shifting */
player.currentPlaybackTime

/* Set this while stopped/paused */
player.nowPlayingItem

/* Read-only */
player.playbackState

Thursday, March 11, 2010

MPMusicPlayerController

• You can get the currently playing item with
nowPlayingItem - gives you back an
MPMediaItem object (or nil)

• Use valueForProperty to get attribute
info, e.g.

[item valueForProperty:MPMediaItemPropertyTitle];
[item valueForProperty:MPMediaItemPropertyAlbum];
[item valueForProperty:MPMediaItemPropertyPlaybackDuration];

Thursday, March 11, 2010

MPMusicPlayerController

• Here is something truly bone-headed: You
can only interrogate the currently playing
item

• You cannot programmatically interrogate
other elements of the current queue
(playlist)

• So there is no way to display playlist info of
a MPMusicPlayerController just through its
own API

Thursday, March 11, 2010

MPMusicPlayerController

• You can only display playlist information if
you gather it from the
MPMediaPickerController

MPMediaPickerController *picker = [[[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeAny] autorelease];
picker.delegate = self;
picker.allowsPickingMultipleItems = YES;
picker.prompt = @"Choose Media To Play";

[self presentModalViewController:picker animated:YES];

Thursday, March 11, 2010

MPMusicPlayerController
allowsPickingMultipleItems = YES allowsPickingMultipleItems = NO

Thursday, March 11, 2010

MPMusicPlayerController

• The MPMediaPickerController tells its
delegate when music is selected, and
returns the item collection
- (void)mediaPicker:(MPMediaPickerController*)mediaPicker
 didPickMediaItems:(MPMediaItemCollection*)mediaItemCollection {	

 /* Update music player */
 [musicController setQueueWithItemCollection:mediaItemCollection];

 /* Dismiss picker */
 [self dismissModalViewControllerAnimated:YES];
}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker {
 [self dismissModalViewControllerAnimated:YES];
}

Thursday, March 11, 2010

MPMusicPlayerController

• The MPMusicPlayerController uses
notifications to indicate when certain
events occur (track finished, volume
changed, etc)

[musicController beginGeneratingPlaybackNotificaitons];
[musicController endGeneratingPlaybackNotificaitons];

MPMusicPlayerControllerPlaybackStateDidChangeNotification
MPMusicPlayerControllerNowPlayingItemDidChangeNotification
MPMusicPlayerControllerVolumeDidChangeNotification

Thursday, March 11, 2010

MPMusicPlayerController

• So register your view controller to handle
those notifications and update the UI, e.g.
NSNotificationCenter *notificationCenter =
 [NSNotificationCenter defaultCenter];

[notificationCenter
 addObserver:self
 selector:@selector(handleNowPlayingItemChanged:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:musicController
];

Thursday, March 11, 2010

