CS 47

Beginning iPhone Application Development

Week 6: Quartz, Animations and Touch Handling

Thursday, February 18, 2010

V in MVC

® Joday we are going to focus on the view
component of the MVC framework

® Quartz 2D (QuartzCore)

® Animations

® Custom touch handlers

Thursday, February 18, 2010

Quartz 2D

® VWhat can you do with Quartz?

® Draw custom graphics (shapes, lines,
patterns, etc)

® Provide graphics editing behavior (e.g.
erase, cut/copy graphics, etc)

® |mage, PDF creation

® Standard UlViews use QuartzCore
(drawRect:)

Thursday, February 18, 2010

Quartz

® Some other typical uses

® When you need a view that cannot be
made through a combination of standard
views (and more than just images)

® Applying shading effects to dynamic
strings (UlLabel does not have blur)

® Applying round corners and shading to
images (e.g. portraits)

Thursday, February 18, 2010

Quartz

® Quartz follows the painters model
® Start with a blank canvas

® Perform sequential operations, each
immediately affecting the canvas state

Drawing order Result Result

o8 @

Drawing order

8 @&

Thursday, February 18, 2010

Quartz

® How do we represent the canvas!
® CGContextRef
® Part of the CoreGraphics library (CG)

® The CGContextRef encapsulates whatever
destination you are painting to (on iPhone,
just screen or image)

Thursday, February 18, 2010

CGContextRef

® Note: There are a boatload of functions in
the CGContextRef family

® We can’t go over them all

® Please read the CGContextRef API
documentation for a thorough list of
functions

Thursday, February 18, 2010

CGContextRef

How do we get a CGContextRef value!?

If you want the current “screen” context:

UIGraphicsGetCurrentContext

If you want to draw a custom image:

UIGraphicsBeginImageContext

UIGraphicsGetImageFromCurrentImageContext
UIGraphicsEndImageContext

Thursday, February 18, 2010

CGContextRef

® The typical usage of the context is inside
the drawRect: method of a UlView subclass
you create

- (void) drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();
. stuff with context ...

-

® You can use the image context creation
anywhere (does not need to be in a code
area related to graphics)

Thursday, February 18, 2010

CGContextRef

® The CGContextRef tracks many drawing
states

® Transform matrix, clipping area, line
configuration, colors, text-drawing,
blending mode, etc

® Drawing operations respect the immediate
state of the context

Thursday, February 18, 2010

CGContextRef

® Example of some states you can modify

CGContextGetInterpolationQuality

CGContextSetFlatness
CGContextSetInterpolationQuality

CGContextSetLineCap
CGContextSetLineDash

CGContextSetLineloin
CGContextSetLineWidth

CGContextSetMiterLimit
CGContextSetPatternPhase

CGContextSetFillPattern
CGContextSetRenderinglntent

CGContextSetShouldAntialias
CGContextSetShouldSmoothFonts

CGContextSetStrokePattern
CGContextSetBlendMode

CGContextSetAllowsAntialiasing

Thursday, February 18, 2010

CGContextRef

You can take a snapshot of the current
context state and save it on a stack

CGContextSave(GState

And then, after making changes to the
state, you can pop a saved state off the
stack and restore it

CGContextRestoreGState

Useful for iterating through “stamp”
functions

Thursday, February 18, 2010

Applying Paint

® When you apply paint, you need to specify:

® A geometry (line, rectangle, arc, path, text,

etc)
e.g. CGContextFillRect vs. CGContextFillPath

® Fill vs. stroke (solid color vs. outline)
e.g. CGContextFillRect vs. CGContextStrokeRect

Thursday, February 18, 2010

Creating a Path

® Think of a drawing a path on a piece of paper

® Start: CGContextBeginPath

® Add routes: CGContextAddArc, CGContextAddLines,
CGContextAddRect, etc

® Or lift the pen and move: cGContextRefMoveToPoint

® End: cGContextEndPath -or- fill/stroke the path

Thursday, February 18, 2010

Colors

® CoreGraphics represents color with the
CGColorRef object

® Created from a CGColorSpaceRef, and
space-specific components (example later)

® Often convenient to use the CGColor
getter of a UlColor object

UIColor *myRed
CGColorRef redRef

[UIColor redColor];
myRed.CGColor;

Thursday, February 18, 2010

Colors

® Set the color states with CGColorRef

CGContextSetFillColorWithColor
CGContextSetStrokeColorWithColor

® Set the color states with component array

CGContextSetFillColor
CGContextSetStrokeColor

® Set the color states with RGB components

CGContextSetRGBFil1lColor
CGContextSetRGBStrokeColor

Thursday, February 18, 2010

Shadows

® Shadows have: color, offset and blur

CGContextSetShadowWithColor

® When shadows are enabled, the shape is
drawn first with the shadow parameters
(special color, offset and blur), then drawn a
second time with the normal parameters

® Turn shadows off by restoring state, or
passing a NULL color

Thursday, February 18, 2010

Shadows

Increasing the blur value will increase the
blur bleed radius, but decrease the intensity
of the color

If you want a larger blur radius with a more
intense color, you will have to draw the
shape multiple times with the proper blend
mode

Thursday, February 18, 2010

Blending

® CGContextSetBlendMode

® You will almost always use kCGBlendModeNormal

® The normal blend mode uses the alpha
value of the source to blend with the
destination

® Extensive examples in the Paths section of
the Quartz 2D Programming Guide

Thursday, February 18, 2010

Memory Management

® CGisa CAPI but acts much like
Objective-C memory management

® Any value you get from a “Create” or
“Copy” function, you must call the
corresponding “Release” function on.

® You can use the “Retain’ functions to
increment the reference counter

Thursday, February 18, 2010

Memory Management

® Example

CGColorSpaceRef *colorSpace = CGColorSpaceCreateDeviceRGB();
CGColorRef *color = CGColorCreate(colorSpace, comps);

/* This does an implicit retain of the color */
myLayer.backgroundColor = color;

CGColorRelease(color);
CGColorSpaceRelease(colorSpace);

Thursday, February 18, 2010

Drawing Custom Fonts

® With the standard UIKit views, you are
limited to the fonts provided by apple (e.g.
the fonts accessible with UlFont).

® With Quartz, you can draw any TrueType

font - use this to make your own custom
UlLabel class

Thursday, February 18, 2010

Drawing Custom Fonts

/* Create the CGFontRef from a .ttf file */

NSString* fontPath = [[NSBundle mainBundle]
pathForResource:fontName ofType:@"ttf"];

NSURL *fontURL = [NSURL fileURLWithPath:fontPath isDirectory:NO];
CGDataProviderRef fProv = CGDataProviderCreateWithURL((CFURLRef) fontURL);

/* Create the font reference object from the data provider */
CGFontRef fontRef = CGFontCreateWithDataProvider(fontProvider);

/* Release handle */
CGDataProviderRelease(fontProvider);

Thursday, February 18, 2010

Drawing Custom Fonts

/* Now we have a CGFontRef object, let’s apply it to our CGContextRef */
CGContextSetFont(context, fontRef);
CGContextSetFontSize(context, size);

/* We need to flip over the X-axis since 1t wants to draw upside down */
CGAffineTransform xfrm = CGAffineTransformMake(1.0, 0.0, 0.0, -1.0, 0.0, 0.0);
CGContextSetTextMatrix(context, xfrm);

/* We need to draw glyphs (normally, ASCII value - 29) */

CGGlyph _glyphStr[512];

const char *utfstr = [myText UTF8String];

for (int 1 = 0; 1 < [myText length]; 1++) _glyphStr[i1] = utfstr[i1] - 29;

CGContextSetFillColorWithColor(context, textColor.CGColor);
CGContextShowGlyphsAtPoint(context, xPos, size, _glyphStr, [myText length]);

Thursday, February 18, 2010

Animation

® There are a few ways to think about
animation

® Cycling images per frame (like an
animated GIF file)

® Changing the higher-level properties of
a view over a period of time

Thursday, February 18, 2010

Animation

® |mage cycling (like an animated GIF) is
usually accomplished with the UllmageView
class - what is it good for?

Properties:
.animationImages
.animationDuration
.animationRepeatCount

Methods:
- startAnimating
- stopAnimating

Thursday, February 18, 2010

Animation

® What you will use way more often is the
concept of animating the structure of the
view hierarchy

® Moving views around the screen smoothly,
rotating them, fading them in and out, etc

® Think about what a UlNavigationController
does when switching screens

Thursday, February 18, 2010

Animation

® [wo general styles of high level animation
® Modify the UlView objects (high level)
® Modify the CALayer objects (low level)

Thursday, February 18, 2010

UlIView Animation

® You should be familiar with UlViews by
now. Most of the Ul elements you've
worked with are subclass from UlView

® You can apply the generic UlView
animations to any UlView

® Very simple, easy interface, but limited to a
few types of animations

Thursday, February 18, 2010

UlIView Animation

® All UlView animations are done in blocks

® Animation blocks must begin with

[UIView beginAnimations:nil context:NULL];

® You can name the animation/context if you want, but
this necessary only if you need to track the lifecycle
of multiple animations. Most animations are fire and
forget

® Animation blocks must end with

[UIView commitAnimations];

Thursday, February 18, 2010

UlIView Animation

® UlView animation blocks can be modified
by calling these class methods inside of the
block

setAnimationStartDate:
setAnimationDelegate:
setAnimationWillStartSelector:
setAnimationDidStopSelector:
setAnimationDuration:
setAnimationDelay:
setAnimationCurve:
setAnimationRepeatCount:
setAnimationRepeatAutoreverses:
setAnimationBeginsFromCurrentState:

+ + + + + + + + + +

Thursday, February 18, 2010

UlIView Animation

UlView animation blocks can be nested,
creating a stack of animation blocks

Animation blocks are executed when the
corresponding commitAnimations method
is called

Setting animation parameters affects the
block on the top of the stack

Thursday, February 18, 2010

UlView Animations

® So what properties can | animate about a

UlView!?

frame - Change the rectangle of the view
bounds - Same as above, but relative to view
center - Move the center relative to parent
transform - Scale, rotate, transform

alpha - Change opacity/transparency

® |t’s a short list, but you can still achieve 90%
of animations you'd want (move, resize,
rotate, fade)

Thursday, February 18, 2010

CoreAnimation

® What if want more fine grain,
programmatic control of animation!?

® Need to apply CAAnimation objects to
CAlLayers

® CA = CoreAnimation, part of QuartzCore

Thursday, February 18, 2010

CoreAnimation

® UlViews are essentially wrappers for their
underlying layers

® You can access the UlView’s layer with
the .layer accessor

CALayer *myLayer = myView.layer;

Thursday, February 18, 2010

CoreAnimation

Layers have their own hierarchy

CALayer *mylLayer = myView.layer;
CALayer *newLayer = [CALayer layer];
[myLayer addSublayer:newlLayer];

/* DON’T MIX AND MATCH UIView HIERARCHY

WITH CALayer HIERARCHY - THIS IS BAD:

CALayer *mylLayer = myView.layer;
CALayer *mylLayer2 = myViewZ.layer;
[myLayer addSublayer:mylLayer?];

*/

Thursday, February 18, 2010

CoreAnimation

® CAlayer objects have many animatable
properties

® Joo long to list - check the Core Animation
Programming Guide (section:“Layer Style
Properties™)

Thursday, February 18, 2010

CoreAnimation

Modifying a layer’s property directly
performs an implicit animation
CALayer *mylLayer = myView.layer;

/* Animates to red using default animation parameters */
myLayer.backgroundColor = [UIColor redColor].CGColor;

/* Moves to new position using default animation params */
myLayer.position = CGPointMake(50.0, 50.0);

Thursday, February 18, 2010

CoreAnimation

® Use CATransaction to nest implicit
animations (just like UlView animation)

[CATransaction begin];

[CATransaction setValue:[NSNumber numberWithFloat:2.0f]
forKey:kCATransactionAnimationDuration];

theLayer.position = CGPointMake(0.0,0.0);

[CATransaction end];

Thursday, February 18, 2010

CoreAnimation

Or you can explicitly define a CAAnimation
object and apply it to the layer

CABasicAnimation *animation;
animation = [CABasicAnimation animationWithKeyPath:@"position"];

animation.delegate self;
animation.duration 0.25;

animation.fromValue [NSValue valueWithCGPoint:(myLayerl.position)];
animation.toValue [NSValue valueWithCGPoint:(p)];

[myLayerl addAnimation:animation forKey:@"animatePosition"];

Important: the animationWithKeyPath argument

must be the name of an animatable property (e.g.
position, backgroundColor, opacity, etc)

Thursday, February 18, 2010

CoreAnimation

Notice that | assigned a delegate to the
previous animation!?

® The delegate receives these protocol

MeESsages

- (void)animationDidStart: (CAAnimation *)theAnimation
- (void)animationDidStop:(CAAnimation *)theAnimation finished:(BOOL)flag

Good for chaining animations, or taking an
action after an animation is complete

Thursday, February 18, 2010

CoreAnimation

® Just Mentioning: CAKeyframeAnimation

® Used to animate through a specific path at
various time intervals

Thursday, February 18, 2010

Handling Touches

® Shifting gears to touch handling

® We already know how to catch generic
events in generic UlViews with the
addTarget method (like a button press)

® But what if we want fine-grain touch
tracking?

Thursday, February 18, 2010

Handling Touches

If you want to monitor all touch events, you
must subclass UlView and implement these
methods

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved: (NSSet *)touches withEvent:(UIEvent *)event

- (void)touchesEnded: (NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

If you want to track multiple events, be
sure to set multipleTouchEnabled to YES

for the UlView

myView.multipleTouchEnabled = YES;

Thursday, February 18, 2010

Handling Touches

® |n the touch handler, query the event for
touches belonging to your view

NSArray *myTouches = [[event touchesForView:self] allObjects];
/* Remember: self is the UIView we’re subclassing */

® You can get up to S touch objects in this
array if multipleTouchEnabled is true

® Extract the UlTouch objects from this array

UITouch *myTouch = [myTouches objectAtIndex:0Q];

Thursday, February 18, 2010

Handling Touches

® Once we have the touch object, we can
query for its location

UITouch *touch = [myTouches objectAtIndex:0];
CGPoint currentLocation = [touch locationInView:self];

CGPoint previouslLocation = [touch previousLocationInView:self];

® You can repeat this for each touch to get
the current and previous position of each
one

Thursday, February 18, 2010

Handling Positions

® What you do with the touch locations is
entire up to you

® c.g.Use your subclass to track things like

distance, swipe speed, rotating touches in a
circle, etc

® You could use that info to directly

manipulate graphics contained in your
view, or...

Thursday, February 18, 2010

Handling Positions

® Think MVC: Your view should have as little
specific logic as possible

® |t may make more sense to implement a

protocol to send gesture handling back to a
controller

® | et the controller process the gestures and
update your view accordingly

Thursday, February 18, 2010

