CS 47

Beginning iPhone Application Development

Week 6: Quartz, Animations and Touch Handling
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V in MVC

® Joday we are going to focus on the view
component of the MVC framework

® Quartz 2D (QuartzCore)

® Animations

® Custom touch handlers

Thursday, February 18, 2010



Quartz 2D

® VWhat can you do with Quartz?

® Draw custom graphics (shapes, lines,
patterns, etc)

® Provide graphics editing behavior (e.g.
erase, cut/copy graphics, etc)

® |mage, PDF creation

® Standard UlViews use QuartzCore
(drawRect:)
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Quartz

® Some other typical uses

® When you need a view that cannot be
made through a combination of standard
views (and more than just images)

® Applying shading effects to dynamic
strings (UlLabel does not have blur)

® Applying round corners and shading to
images (e.g. portraits)
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Quartz

® Quartz follows the painters model
® Start with a blank canvas

® Perform sequential operations, each
immediately affecting the canvas state

Drawing order Result Result

o8 @

Drawing order

8 @&

Thursday, February 18, 2010



Quartz

® How do we represent the canvas!
® CGContextRef
® Part of the CoreGraphics library (CG)

® The CGContextRef encapsulates whatever
destination you are painting to (on iPhone,
just screen or image)
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CGContextRef

® Note: There are a boatload of functions in
the CGContextRef family

® We can’t go over them all

® Please read the CGContextRef API
documentation for a thorough list of
functions
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CGContextRef

How do we get a CGContextRef value!?

If you want the current “screen” context:

UIGraphicsGetCurrentContext

If you want to draw a custom image:

UIGraphicsBeginImageContext

UIGraphicsGetImageFromCurrentImageContext
UIGraphicsEndImageContext
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CGContextRef

® The typical usage of the context is inside
the drawRect: method of a UlView subclass
you create

- (void) drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();
. stuff with context ...

-

® You can use the image context creation
anywhere (does not need to be in a code
area related to graphics)
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CGContextRef

® The CGContextRef tracks many drawing
states

® Transform matrix, clipping area, line
configuration, colors, text-drawing,
blending mode, etc

® Drawing operations respect the immediate
state of the context
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CGContextRef

® Example of some states you can modify

CGContextGetInterpolationQuality

CGContextSetFlatness
CGContextSetInterpolationQuality

CGContextSetLineCap
CGContextSetLineDash

CGContextSetLineloin
CGContextSetLineWidth

CGContextSetMiterLimit
CGContextSetPatternPhase

CGContextSetFillPattern
CGContextSetRenderinglntent

CGContextSetShouldAntialias
CGContextSetShouldSmoothFonts

CGContextSetStrokePattern
CGContextSetBlendMode

CGContextSetAllowsAntialiasing
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CGContextRef

You can take a snapshot of the current
context state and save it on a stack

CGContextSave(GState

And then, after making changes to the
state, you can pop a saved state off the
stack and restore it

CGContextRestoreGState

Useful for iterating through “stamp”
functions
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Applying Paint

® When you apply paint, you need to specify:

® A geometry (line, rectangle, arc, path, text,

etc)
e.g. CGContextFillRect vs. CGContextFillPath

® Fill vs. stroke (solid color vs. outline)
e.g. CGContextFillRect vs. CGContextStrokeRect
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Creating a Path

® Think of a drawing a path on a piece of paper

® Start: CGContextBeginPath

® Add routes: CGContextAddArc, CGContextAddLines,
CGContextAddRect, etc

® Or lift the pen and move: cGContextRefMoveToPoint

® End: cGContextEndPath -or- fill/stroke the path
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Colors

® CoreGraphics represents color with the
CGColorRef object

® Created from a CGColorSpaceRef, and
space-specific components (example later)

® Often convenient to use the CGColor
getter of a UlColor object

UIColor  *myRed
CGColorRef redRef

[UIColor redColor];
myRed.CGColor;
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Colors

® Set the color states with CGColorRef

CGContextSetFillColorWithColor
CGContextSetStrokeColorWithColor

® Set the color states with component array

CGContextSetFillColor
CGContextSetStrokeColor

® Set the color states with RGB components

CGContextSetRGBFil1lColor
CGContextSetRGBStrokeColor
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Shadows

® Shadows have: color, offset and blur

CGContextSetShadowWithColor

® When shadows are enabled, the shape is
drawn first with the shadow parameters
(special color, offset and blur), then drawn a
second time with the normal parameters

® Turn shadows off by restoring state, or
passing a NULL color
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Shadows

Increasing the blur value will increase the
blur bleed radius, but decrease the intensity
of the color

If you want a larger blur radius with a more
intense color, you will have to draw the
shape multiple times with the proper blend
mode
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Blending

® CGContextSetBlendMode

® You will almost always use kCGBlendModeNormal

® The normal blend mode uses the alpha
value of the source to blend with the
destination

® Extensive examples in the Paths section of
the Quartz 2D Programming Guide
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Memory Management

® CGisa CAPI but acts much like
Objective-C memory management

® Any value you get from a “Create” or
“Copy” function, you must call the
corresponding “Release” function on.

® You can use the “Retain’ functions to
increment the reference counter
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Memory Management

® Example

CGColorSpaceRef *colorSpace = CGColorSpaceCreateDeviceRGB();
CGColorRef *color = CGColorCreate(colorSpace, comps);

/* This does an implicit retain of the color */
myLayer.backgroundColor = color;

CGColorRelease(color);
CGColorSpaceRelease(colorSpace);
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Drawing Custom Fonts

® With the standard UIKit views, you are
limited to the fonts provided by apple (e.g.
the fonts accessible with UlFont).

® With Quartz, you can draw any TrueType

font - use this to make your own custom
UlLabel class
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Drawing Custom Fonts

/* Create the CGFontRef from a .ttf file */

NSString* fontPath = [[NSBundle mainBundle]
pathForResource:fontName ofType:@"ttf"];

NSURL *fontURL = [NSURL fileURLWithPath:fontPath isDirectory:NO];
CGDataProviderRef fProv = CGDataProviderCreateWithURL((CFURLRef) fontURL);

/* Create the font reference object from the data provider */
CGFontRef fontRef = CGFontCreateWithDataProvider(fontProvider);

/* Release handle */
CGDataProviderRelease(fontProvider);
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Drawing Custom Fonts

/* Now we have a CGFontRef object, let’s apply it to our CGContextRef */
CGContextSetFont(context, fontRef);
CGContextSetFontSize(context, size);

/* We need to flip over the X-axis since 1t wants to draw upside down */
CGAffineTransform xfrm = CGAffineTransformMake(1.0, 0.0, 0.0, -1.0, 0.0, 0.0);
CGContextSetTextMatrix(context, xfrm);

/* We need to draw glyphs (normally, ASCII value - 29) */

CGGlyph _glyphStr[512];

const char *utfstr = [myText UTF8String];

for (int 1 = 0; 1 < [myText length]; 1++) _glyphStr[i1] = utfstr[i1] - 29;

CGContextSetFillColorWithColor(context, textColor.CGColor);
CGContextShowGlyphsAtPoint(context, xPos, size, _glyphStr, [myText length]);

Thursday, February 18, 2010



Animation

® There are a few ways to think about
animation

® Cycling images per frame (like an
animated GIF file)

® Changing the higher-level properties of
a view over a period of time
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Animation

® |mage cycling (like an animated GIF) is
usually accomplished with the UllmageView
class - what is it good for?

Properties:
.animationImages
.animationDuration
.animationRepeatCount

Methods:
- startAnimating
- stopAnimating
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Animation

® What you will use way more often is the
concept of animating the structure of the
view hierarchy

® Moving views around the screen smoothly,
rotating them, fading them in and out, etc

® Think about what a UlNavigationController
does when switching screens
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Animation

® [wo general styles of high level animation
® Modify the UlView objects (high level)
® Modify the CALayer objects (low level)
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UlIView Animation

® You should be familiar with UlViews by
now. Most of the Ul elements you've
worked with are subclass from UlView

® You can apply the generic UlView
animations to any UlView

® Very simple, easy interface, but limited to a
few types of animations
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UlIView Animation

® All UlView animations are done in blocks

® Animation blocks must begin with

[UIView beginAnimations:nil context:NULL];

® You can name the animation/context if you want, but
this necessary only if you need to track the lifecycle
of multiple animations. Most animations are fire and
forget

® Animation blocks must end with

[UIView commitAnimations];
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UlIView Animation

® UlView animation blocks can be modified
by calling these class methods inside of the
block

setAnimationStartDate:
setAnimationDelegate:
setAnimationWillStartSelector:
setAnimationDidStopSelector:
setAnimationDuration:
setAnimationDelay:
setAnimationCurve:
setAnimationRepeatCount:
setAnimationRepeatAutoreverses:
setAnimationBeginsFromCurrentState:

+ + + + + + + + + +
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UlIView Animation

UlView animation blocks can be nested,
creating a stack of animation blocks

Animation blocks are executed when the
corresponding commitAnimations method
is called

Setting animation parameters affects the
block on the top of the stack
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UlView Animations

® So what properties can | animate about a

UlView!?

frame - Change the rectangle of the view
bounds - Same as above, but relative to view
center - Move the center relative to parent
transform - Scale, rotate, transform

alpha - Change opacity/transparency

® |t’s a short list, but you can still achieve 90%
of animations you'd want (move, resize,
rotate, fade)
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CoreAnimation

® What if want more fine grain,
programmatic control of animation!?

® Need to apply CAAnimation objects to
CAlLayers

® CA = CoreAnimation, part of QuartzCore
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CoreAnimation

® UlViews are essentially wrappers for their
underlying layers

® You can access the UlView’s layer with
the .layer accessor

CALayer *myLayer = myView.layer;
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CoreAnimation

Layers have their own hierarchy

CALayer *mylLayer = myView.layer;
CALayer *newLayer = [CALayer layer];
[myLayer addSublayer:newlLayer];

/* DON’T MIX AND MATCH UIView HIERARCHY

WITH CALayer HIERARCHY - THIS IS BAD:

CALayer *mylLayer = myView.layer;
CALayer *mylLayer2 = myViewZ.layer;
[myLayer addSublayer:mylLayer?];

*/
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CoreAnimation

® CAlayer objects have many animatable
properties

® Joo long to list - check the Core Animation
Programming Guide (section:“Layer Style
Properties™)
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CoreAnimation

Modifying a layer’s property directly
performs an implicit animation
CALayer *mylLayer = myView.layer;

/* Animates to red using default animation parameters */
myLayer.backgroundColor = [UIColor redColor].CGColor;

/* Moves to new position using default animation params */
myLayer.position = CGPointMake(50.0, 50.0);
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CoreAnimation

® Use CATransaction to nest implicit
animations (just like UlView animation)

[ CATransaction begin];

[ CATransaction setValue:[NSNumber numberWithFloat:2.0f]
forKey:kCATransactionAnimationDuration];

theLayer.position = CGPointMake(0.0,0.0);

[CATransaction end];
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CoreAnimation

Or you can explicitly define a CAAnimation
object and apply it to the layer

CABasicAnimation *animation;
animation = [CABasicAnimation animationWithKeyPath:@"position"];

animation.delegate self;
animation.duration 0.25;

animation.fromValue [NSValue valueWithCGPoint:(myLayerl.position)];
animation.toValue [NSValue valueWithCGPoint:(p)];

[myLayerl addAnimation:animation forKey:@"animatePosition"];

Important: the animationWithKeyPath argument

must be the name of an animatable property (e.g.
position, backgroundColor, opacity, etc)

Thursday, February 18, 2010



CoreAnimation

Notice that | assigned a delegate to the
previous animation!?

® The delegate receives these protocol

MeESsages

- (void)animationDidStart: (CAAnimation *)theAnimation
- (void)animationDidStop:(CAAnimation *)theAnimation finished:(BOOL)flag

Good for chaining animations, or taking an
action after an animation is complete
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CoreAnimation

® Just Mentioning: CAKeyframeAnimation

® Used to animate through a specific path at
various time intervals
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Handling Touches

® Shifting gears to touch handling

® We already know how to catch generic
events in generic UlViews with the
addTarget method (like a button press)

® But what if we want fine-grain touch
tracking?

Thursday, February 18, 2010



Handling Touches

If you want to monitor all touch events, you
must subclass UlView and implement these
methods

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved: (NSSet *)touches withEvent:(UIEvent *)event

- (void)touchesEnded: (NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

If you want to track multiple events, be
sure to set multipleTouchEnabled to YES

for the UlView

myView.multipleTouchEnabled = YES;
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Handling Touches

® |n the touch handler, query the event for
touches belonging to your view

NSArray *myTouches = [[event touchesForView:self] allObjects];
/* Remember: self is the UIView we’re subclassing */

® You can get up to S touch objects in this
array if multipleTouchEnabled is true

® Extract the UlTouch objects from this array

UITouch *myTouch = [myTouches objectAtIndex:0Q];
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Handling Touches

® Once we have the touch object, we can
query for its location

UITouch *touch = [myTouches objectAtIndex:0];
CGPoint currentLocation = [touch locationInView:self];

CGPoint previouslLocation = [touch previousLocationInView:self];

® You can repeat this for each touch to get
the current and previous position of each
one
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Handling Positions

® What you do with the touch locations is
entire up to you

® c.g.Use your subclass to track things like

distance, swipe speed, rotating touches in a
circle, etc

® You could use that info to directly

manipulate graphics contained in your
view, or...
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Handling Positions

® Think MVC: Your view should have as little
specific logic as possible

® |t may make more sense to implement a

protocol to send gesture handling back to a
controller

® | et the controller process the gestures and
update your view accordingly
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