
CS 47
Beginning iPhone Application Development

Week 6: Quartz, Animations and Touch Handling

Thursday, February 18, 2010

V in MVC

• Today we are going to focus on the view
component of the MVC framework

• Quartz 2D (QuartzCore)

• Animations

• Custom touch handlers

Thursday, February 18, 2010

Quartz 2D

• What can you do with Quartz?

• Draw custom graphics (shapes, lines,
patterns, etc)

• Provide graphics editing behavior (e.g.
erase, cut/copy graphics, etc)

• Image, PDF creation

• Standard UIViews use QuartzCore
(drawRect:)

Thursday, February 18, 2010

Quartz

• Some other typical uses

• When you need a view that cannot be
made through a combination of standard
views (and more than just images)

• Applying shading effects to dynamic
strings (UILabel does not have blur)

• Applying round corners and shading to
images (e.g. portraits)

Thursday, February 18, 2010

Quartz

• Quartz follows the painters model

• Start with a blank canvas

• Perform sequential operations, each
immediately affecting the canvas state

Thursday, February 18, 2010

Quartz

• How do we represent the canvas?

• CGContextRef

• Part of the CoreGraphics library (CG)

• The CGContextRef encapsulates whatever
destination you are painting to (on iPhone,
just screen or image)

Thursday, February 18, 2010

CGContextRef

• Note: There are a boatload of functions in
the CGContextRef family

• We can’t go over them all

• Please read the CGContextRef API
documentation for a thorough list of
functions

Thursday, February 18, 2010

CGContextRef

• How do we get a CGContextRef value?

• If you want the current “screen” context:
UIGraphicsGetCurrentContext

• If you want to draw a custom image:
UIGraphicsBeginImageContext
UIGraphicsGetImageFromCurrentImageContext
UIGraphicsEndImageContext

Thursday, February 18, 2010

CGContextRef

• The typical usage of the context is inside
the drawRect: method of a UIView subclass
you create
- (void) drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 ... stuff with context ...
}

• You can use the image context creation
anywhere (does not need to be in a code
area related to graphics)

Thursday, February 18, 2010

CGContextRef

• The CGContextRef tracks many drawing
states

• Transform matrix, clipping area, line
configuration, colors, text-drawing,
blending mode, etc

• Drawing operations respect the immediate
state of the context

Thursday, February 18, 2010

CGContextRef

• Example of some states you can modify
CGContextGetInterpolationQuality
CGContextSetFlatness
CGContextSetInterpolationQuality
CGContextSetLineCap
CGContextSetLineDash
CGContextSetLineJoin
CGContextSetLineWidth
CGContextSetMiterLimit
CGContextSetPatternPhase
CGContextSetFillPattern
CGContextSetRenderingIntent
CGContextSetShouldAntialias
CGContextSetShouldSmoothFonts
CGContextSetStrokePattern
CGContextSetBlendMode
CGContextSetAllowsAntialiasing

Thursday, February 18, 2010

CGContextRef
• You can take a snapshot of the current

context state and save it on a stack

CGContextSaveGState

• And then, after making changes to the
state, you can pop a saved state off the
stack and restore it

CGContextRestoreGState

• Useful for iterating through “stamp”
functions

Thursday, February 18, 2010

Applying Paint

• When you apply paint, you need to specify:

• A geometry (line, rectangle, arc, path, text,
etc)
e.g. CGContextFillRect vs. CGContextFillPath

• Fill vs. stroke (solid color vs. outline)
e.g. CGContextFillRect vs. CGContextStrokeRect

Thursday, February 18, 2010

Creating a Path

• Think of a drawing a path on a piece of paper

• Start: CGContextBeginPath

• Add routes: CGContextAddArc, CGContextAddLines,
CGContextAddRect, etc

• Or lift the pen and move: CGContextRefMoveToPoint

• End: CGContextEndPath -or- fill/stroke the path

Thursday, February 18, 2010

Colors

• CoreGraphics represents color with the
CGColorRef object

• Created from a CGColorSpaceRef, and
space-specific components (example later)

• Often convenient to use the CGColor
getter of a UIColor object

UIColor *myRed = [UIColor redColor];
CGColorRef redRef = myRed.CGColor;

Thursday, February 18, 2010

Colors

• Set the color states with CGColorRef
CGContextSetFillColorWithColor
CGContextSetStrokeColorWithColor

• Set the color states with component array
CGContextSetFillColor
CGContextSetStrokeColor

• Set the color states with RGB components
CGContextSetRGBFillColor
CGContextSetRGBStrokeColor

Thursday, February 18, 2010

Shadows

• Shadows have: color, offset and blur

CGContextSetShadowWithColor

• When shadows are enabled, the shape is
drawn first with the shadow parameters
(special color, offset and blur), then drawn a
second time with the normal parameters

• Turn shadows off by restoring state, or
passing a NULL color

Thursday, February 18, 2010

Shadows

• Increasing the blur value will increase the
blur bleed radius, but decrease the intensity
of the color

• If you want a larger blur radius with a more
intense color, you will have to draw the
shape multiple times with the proper blend
mode

Thursday, February 18, 2010

Blending

• CGContextSetBlendMode

• You will almost always use kCGBlendModeNormal

• The normal blend mode uses the alpha
value of the source to blend with the
destination

• Extensive examples in the Paths section of
the Quartz 2D Programming Guide

Thursday, February 18, 2010

Memory Management

• CG is a C API, but acts much like
Objective-C memory management

• Any value you get from a “Create” or
“Copy” function, you must call the
corresponding “Release” function on.

• You can use the “Retain” functions to
increment the reference counter

Thursday, February 18, 2010

Memory Management

• Example

CGColorSpaceRef *colorSpace = CGColorSpaceCreateDeviceRGB();
CGColorRef *color = CGColorCreate(colorSpace, comps);

/* This does an implicit retain of the color */
myLayer.backgroundColor = color;

CGColorRelease(color);
CGColorSpaceRelease(colorSpace);

Thursday, February 18, 2010

Drawing Custom Fonts

• With the standard UIKit views, you are
limited to the fonts provided by apple (e.g.
the fonts accessible with UIFont).

• With Quartz, you can draw any TrueType
font - use this to make your own custom
UILabel class

Thursday, February 18, 2010

Drawing Custom Fonts

/* Create the CGFontRef from a .ttf file */

NSString* fontPath = [[NSBundle mainBundle]
 pathForResource:fontName ofType:@"ttf"];

NSURL *fontURL = [NSURL fileURLWithPath:fontPath isDirectory:NO];		

CGDataProviderRef fProv = CGDataProviderCreateWithURL((CFURLRef) fontURL);

/* Create the font reference object from the data provider */
CGFontRef fontRef = CGFontCreateWithDataProvider(fontProvider);

/* Release handle */
CGDataProviderRelease(fontProvider);

Thursday, February 18, 2010

Drawing Custom Fonts
/* Now we have a CGFontRef object, let’s apply it to our CGContextRef */
CGContextSetFont(context, fontRef);
CGContextSetFontSize(context, size);

/* We need to flip over the X-axis since it wants to draw upside down */
CGAffineTransform xfrm = CGAffineTransformMake(1.0, 0.0, 0.0, -1.0, 0.0, 0.0);
CGContextSetTextMatrix(context, xfrm);

/* We need to draw glyphs (normally, ASCII value - 29) */
CGGlyph _glyphStr[512];
const char *utfstr = [myText UTF8String];
for (int i = 0; i < [myText length]; i++) _glyphStr[i] = utfstr[i] - 29;

CGContextSetFillColorWithColor(context, textColor.CGColor);
CGContextShowGlyphsAtPoint(context, xPos, size, _glyphStr, [myText length]);

Thursday, February 18, 2010

Animation

• There are a few ways to think about
animation

• Cycling images per frame (like an
animated GIF file)

• Changing the higher-level properties of
a view over a period of time

Thursday, February 18, 2010

Animation

• Image cycling (like an animated GIF) is
usually accomplished with the UIImageView
class - what is it good for?

Properties:
.animationImages
.animationDuration
.animationRepeatCount

Methods:
- startAnimating
- stopAnimating

Thursday, February 18, 2010

Animation

• What you will use way more often is the
concept of animating the structure of the
view hierarchy

• Moving views around the screen smoothly,
rotating them, fading them in and out, etc

• Think about what a UINavigationController
does when switching screens

Thursday, February 18, 2010

Animation

• Two general styles of high level animation

• Modify the UIView objects (high level)

• Modify the CALayer objects (low level)

Thursday, February 18, 2010

UIView Animation

• You should be familiar with UIViews by
now. Most of the UI elements you’ve
worked with are subclass from UIView

• You can apply the generic UIView
animations to any UIView

• Very simple, easy interface, but limited to a
few types of animations

Thursday, February 18, 2010

UIView Animation

• All UIView animations are done in blocks

• Animation blocks must begin with
[UIView beginAnimations:nil context:NULL];

• You can name the animation/context if you want, but
this necessary only if you need to track the lifecycle
of multiple animations. Most animations are fire and
forget

• Animation blocks must end with
[UIView commitAnimations];

Thursday, February 18, 2010

UIView Animation

• UIView animation blocks can be modified
by calling these class methods inside of the
block
+ setAnimationStartDate:
+ setAnimationDelegate:
+ setAnimationWillStartSelector:
+ setAnimationDidStopSelector:
+ setAnimationDuration:
+ setAnimationDelay:
+ setAnimationCurve:
+ setAnimationRepeatCount:
+ setAnimationRepeatAutoreverses:
+ setAnimationBeginsFromCurrentState:

Thursday, February 18, 2010

UIView Animation

• UIView animation blocks can be nested,
creating a stack of animation blocks

• Animation blocks are executed when the
corresponding commitAnimations method
is called

• Setting animation parameters affects the
block on the top of the stack

Thursday, February 18, 2010

UIView Animations

• So what properties can I animate about a
UIView?

frame - Change the rectangle of the view
bounds - Same as above, but relative to view
center - Move the center relative to parent
transform - Scale, rotate, transform
alpha - Change opacity/transparency

• It’s a short list, but you can still achieve 90%
of animations you’d want (move, resize,
rotate, fade)

Thursday, February 18, 2010

CoreAnimation

• What if want more fine grain,
programmatic control of animation?

• Need to apply CAAnimation objects to
CALayers

• CA = CoreAnimation, part of QuartzCore

Thursday, February 18, 2010

CoreAnimation

• UIViews are essentially wrappers for their
underlying layers

• You can access the UIView’s layer with
the .layer accessor

CALayer *myLayer = myView.layer;

Thursday, February 18, 2010

CoreAnimation

• Layers have their own hierarchy

CALayer *myLayer = myView.layer;
CALayer *newLayer = [CALayer layer];
[myLayer addSublayer:newLayer];

/* DON’T MIX AND MATCH UIView HIERARCHY
 WITH CALayer HIERARCHY - THIS IS BAD: */
CALayer *myLayer = myView.layer;
CALayer *myLayer2 = myView2.layer;
[myLayer addSublayer:myLayer2];

Thursday, February 18, 2010

CoreAnimation

• CALayer objects have many animatable
properties

• Too long to list - check the Core Animation
Programming Guide (section: “Layer Style
Properties”)

Thursday, February 18, 2010

CoreAnimation

• Modifying a layer’s property directly
performs an implicit animation

CALayer *myLayer = myView.layer;

/* Animates to red using default animation parameters */
myLayer.backgroundColor = [UIColor redColor].CGColor;

/* Moves to new position using default animation params */
myLayer.position = CGPointMake(50.0, 50.0);

Thursday, February 18, 2010

CoreAnimation

• Use CATransaction to nest implicit
animations (just like UIView animation)

[CATransaction begin];

[CATransaction setValue:[NSNumber numberWithFloat:2.0f]
 forKey:kCATransactionAnimationDuration];

theLayer.position = CGPointMake(0.0,0.0);

[CATransaction end];

Thursday, February 18, 2010

CoreAnimation

• Or you can explicitly define a CAAnimation
object and apply it to the layer
CABasicAnimation *animation;
animation = [CABasicAnimation animationWithKeyPath:@"position"];
animation.delegate = self;
animation.duration = 0.25;
animation.fromValue = [NSValue valueWithCGPoint:(myLayer1.position)];
animation.toValue = [NSValue valueWithCGPoint:(p)];
[myLayer1 addAnimation:animation forKey:@"animatePosition"];

• Important: the animationWithKeyPath argument
must be the name of an animatable property (e.g.
position, backgroundColor, opacity, etc)

Thursday, February 18, 2010

CoreAnimation

• Notice that I assigned a delegate to the
previous animation?

• The delegate receives these protocol
messages

- (void)animationDidStart:(CAAnimation *)theAnimation
- (void)animationDidStop:(CAAnimation *)theAnimation finished:(BOOL)flag

• Good for chaining animations, or taking an
action after an animation is complete

Thursday, February 18, 2010

CoreAnimation

• Just Mentioning: CAKeyframeAnimation

• Used to animate through a specific path at
various time intervals

Thursday, February 18, 2010

Handling Touches

• Shifting gears to touch handling

• We already know how to catch generic
events in generic UIViews with the
addTarget method (like a button press)

• But what if we want fine-grain touch
tracking?

Thursday, February 18, 2010

Handling Touches

• If you want to monitor all touch events, you
must subclass UIView and implement these
methods
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

• If you want to track multiple events, be
sure to set multipleTouchEnabled to YES
for the UIView
myView.multipleTouchEnabled = YES;

Thursday, February 18, 2010

Handling Touches

• In the touch handler, query the event for
touches belonging to your view
NSArray *myTouches = [[event touchesForView:self] allObjects];
/* Remember: self is the UIView we’re subclassing */

• You can get up to 5 touch objects in this
array if multipleTouchEnabled is true

• Extract the UITouch objects from this array
UITouch *myTouch = [myTouches objectAtIndex:0];

Thursday, February 18, 2010

Handling Touches

• Once we have the touch object, we can
query for its location
UITouch *touch = [myTouches objectAtIndex:0];
CGPoint currentLocation = [touch locationInView:self];
CGPoint previousLocation = [touch previousLocationInView:self];

• You can repeat this for each touch to get
the current and previous position of each
one

Thursday, February 18, 2010

Handling Positions

• What you do with the touch locations is
entire up to you

• e.g. Use your subclass to track things like
distance, swipe speed, rotating touches in a
circle, etc

• You could use that info to directly
manipulate graphics contained in your
view, or...

Thursday, February 18, 2010

Handling Positions

• Think MVC: Your view should have as little
specific logic as possible

• It may make more sense to implement a
protocol to send gesture handling back to a
controller

• Let the controller process the gestures and
update your view accordingly

Thursday, February 18, 2010

