
CS 47
Beginning iPhone Application Development

Week 5: Data Retrieval and Storage

Thursday, February 11, 2010

Office Hours

• Cancelled this weekend

• Please email or send questions to the
discussion forum

Thursday, February 11, 2010

Quick MVC Review

• Data retrieval and storage is focused mainly
in the model component of your
application

• Remember: The model should be as
reusable as possible

• Think layers of abstraction

Thursday, February 11, 2010

Connectivity

• The iPhone provides an IP stack over the
3G or Wifi connection.

• This connection should be considered
unreliable. If you have a choice, focus on a
fast request-response communication
model

Thursday, February 11, 2010

Sockets

• Yes, you can use all of the standard socket
programming calls: socket(), bind(), accept
(), connect(), read(), write(), etc.

• Or one level higher: CFSocket API

Thursday, February 11, 2010

Sockets

• Persistent sockets have their uses

• Good for games, highly interactive apps that
constantly receive information from a
server (streaming audio, video, etc)

• But unlike the desktop environment, you
will need more code to gracefully handle
socket disconnects

Thursday, February 11, 2010

Request-Response

• Most iPhone apps will only need request-
response style data retrieval

• Think: web browser

• 99.99%* of web apps use the request-
response model

*Not scientifically determined

Thursday, February 11, 2010

Request-Response

• So put yourself in the mindset of making a
web application that happens to render
natively on the phone

• We already have a widely-used protocol for
request-response communication: HTTP

Thursday, February 11, 2010

Request-Response
• Any time we want data, or want to notify the

server of something, we are going to fire off
an HTTP request

• This can be wrapped in an Objective-C
handler class, and integrates nicely into your
MVC architecture

• Happy Birthday: I’m giving you mine

• But we should still have a basic understanding
of the internals. Let’s start with the basics:

Thursday, February 11, 2010

NSURL

• NSURL : NSObject

• Represents URLs as defined by RFC 1808,
1738 and 2732

• Generally you will just initialize them with a
string, but several initialization methods are
available
NSURL *myURL = [NSURL URLWithString:@”http://www.fieldman.org”];

Thursday, February 11, 2010

http://www.fieldman.org
http://www.fieldman.org

NSURL

• What about GET URLs with weird
characters?
http://www.fieldman.org?user_id=2&comment=Hello World

• Need to percent escape them
NSString *getURLString = ...;
NSURL *myURL = [getURLString
 stringByAddingPercentEscapesUsingEncoding:NSASCIIStringEncoding];

Thursday, February 11, 2010

NSURLRequest

• NSURLRequest : NSObject

• (Generally you want a
NSMutableURLRequest)
NSURL *url = [NSURL URLWithString:@”...”];
NSURLRequest *request = [NSURLRequest requestWithURL:myURL];

• Encapsulates the parameters of a request
to a URL

Thursday, February 11, 2010

NSURLRequest

• Things you can set in the
NSMutableURLRequest class

setCachePolicy: Should we use internal cache?
setTimeoutInterval: How long before we give up
setHTTPMethod: POST, GET or others
setHTTPBody: Fill out the POST data
setValue:forHTTPHeaderField: Set random HTTP headers

Thursday, February 11, 2010

NSURLConnection

• So we have a request object
representation, how do we execute it?

• NSURLConnection : NSObject

• Handles the very basic, low-level HTTP
socket connection

• Reports back to its delegate when
protocol events occur

Thursday, February 11, 2010

Sync vs. Async

• Synchronous vs. Asynchronous relates to
the blocking nature of the request

• A synchronous call blocks execution of the
current thread until the request is
complete

+ sendSynchronousRequest:returningResponse:error:

• That seems pretty simple

Thursday, February 11, 2010

Synchronous

• Problem:

• Most of your code will be in the main
thread. What happens if you make a
synchronous URL request from the main
thread?

• All UI handling is blocked until the request
returns

Thursday, February 11, 2010

Synchronous

• Solution:

• Call sendSynchronousRequest from another thread
- (void) someMainThreadFunc {
 NSMutableURLRequest *request = ...;
 [self performSelectorInBackground:@selector(sendReq:) withObject:request];
}

- (void) sendReq:(NSURLRequest*)req {
 NSData *retData = [NSURLConnection sendSynchronousRequest:req returningResponse:nil error:nil];
 [self performSelectorOnMainThread:@selector(receivedData:) withObject:retData waitUntilDone:NO];
}

- (void) receivedData:(NSData*)data {
 /* Do something with data */
}

Thursday, February 11, 2010

Synchronous

• This is fairly simple to implement and is
good for quick prototyping, but it’s not very
reusable

• Also, you don’t have any visibility into the
request while it’s processing (e.g. no %-
complete indicators)

• Can’t be cancelled

• What if we’re getting a massive file?

Thursday, February 11, 2010

Asynchronous

• So let’s use asynchronous instead - a bit
more complicated, but more flexible and in-
line with the protocol-delegate pattern

• Asynchronous calls are nonblocking and all
interact in the main thread

Thursday, February 11, 2010

Asynchronous

• Create the connection object; it needs to
exist for the lifetime of the connection
NSURLRequest *request = ...; /* Fully configured request object */
NSURLConnection *connection = [[NSURLConnection alloc] initWithRequest:request
 delegate:self];

• The connection begins immediately when
the object is instantiated

Thursday, February 11, 2010

Asynchronous

• The asynchronous model does not hand us
back a neatly packaged NSData object

• Rather, the delegate is notified when a
chunk of data is read from the stream

• It is the job of the delegate to stream the
incoming data chunk to the proper location
(memory, disk, audio, etc)

Thursday, February 11, 2010

Asynchronous

• Let’s take the example of storing to disk in our
asynchronous delegate methods
- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response {
 /* We can assume this is an NSHTTPURLResponse subclass */
 if ([((NSHTTPURLResponse*)response) statusCode] == 200) {
 fileHandle = [[NSFileHandle fileHandleForUpdatingAtPath:downloadToFilePath] retain];
 currentlyReceived = 0;
 expectedLength = [response expectedContentLength];
 }
}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 [fileHandle writeData:data];
 currentlyReceived += [data length];
 [someDelegate connectionHasReceived:currentlyReceived of:expectedLength];
}

Thursday, February 11, 2010

Asynchronous

• When the connection is complete, our
delegate will either get a success or failure
- (void)connectionDidFinishLoading:(NSURLConnection *)connection;
- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error;

• We can use these methods to notify a
higher-level delegate of completion

Thursday, February 11, 2010

Asynchronous

• Regardless of using synchronous or
asynchronous, we are getting data

• That data can be anything: Images, audio,
JSON, XML, text, etc - it’s up to you to
decide what to do with that data

Thursday, February 11, 2010

Data Storage

• So what do we do with that data?

• Display it (text, images, etc)

• Modify it and upload it

• Save to disk

Thursday, February 11, 2010

Data Storage

• Your application’s storage quota is only
limited by the size of the devices drive

• However you are sand-boxed: You only
have permission to read/write to certain
directories

• You need to programmatically determine
which paths these are

Thursday, February 11, 2010

Data Storage

• NSSearchPathForDirectoriesInDomains
/* Path enumerations
NSDocumentDirectory (backed up)
NSCachesDirectory (not backed up) */

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

/* Creating a subdirectory */
NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *subdir = [NSString stringWithFormat:@”%@/mysubdir”, documentsDirectory];

[fileManager createDirectoryAtPath:subdir
 withIntermediateDirectories:YES
 attributes:nil
 error:nil];

Thursday, February 11, 2010

NSFileHandle

• We’ve already seen one method:
NSFileHandle
NSFileHandle *fileHandle = [NSFileHandle fileHandleForUpdatingAtPath:path];

• Allows standard operations like read/write
in an Objective-C framework
– availableData
– readDataToEndOfFile
– readDataOfLength:
– writeData:

• Just a wrapper for C file descriptors (open/
read/write)

Thursday, February 11, 2010

NSFileHandle

• Has interesting methods to read and write
data in the background
– readInBackgroundAndNotify
– readToEndOfFileInBackgroundAndNotify

• Uses the notification API which we will
discuss in a future class

Thursday, February 11, 2010

Other Alternatives

• Worth mentioning:

• SQLite (compact SQL database API)

• Core Data

• You may need these for random access into
very large data sets, but it’s usually overkill
for most iPhone applications

Thursday, February 11, 2010

Archiving

• A simple, robust, data-oriented approach is
to serialize/archive generic data structures
NSString
NSNumber
NSData
NSDate
NSNull
NSArray
NSDictionary

• Or anything else that adheres to the
NSCoding protocol

Thursday, February 11, 2010

Archiving

• When archiving a container (NSArray,
NSDictionary), the coder will automatically
archive objects they contain

• You can create a multi-tiered archive
(arrays inside dictionaries inside arrays, etc)

Thursday, February 11, 2010

Archiving

• The top-level container classes (NSArray
and NSDictionary) provide the methods
– writeToFile:atomically:
– writeToURL:atomically:

• Simply pass in a file path, and the entire
container is archived and saved as a
property list into that file path

Thursday, February 11, 2010

Archiving

• Just as easy to extract that info back

xxxWithContentsOfFile:(NSString *)aPath
xxx = init, array, dictionary

NSArray *array = [NSArray arrayWithContentsOfFile:x];
NSDictionary *mDic = [[NSDictionary alloc] initWithContentsOfFile:y];

• Builds a container object with the property
list at that file path

Thursday, February 11, 2010

Archiving

• Very simple to code, very powerful as a
means to store general data hierarchies

• Inefficient because it stores in a pseudo-
XMLish format. We can do better with the
binary property list generator

Thursday, February 11, 2010

Archiving

/* Archiving */
NSData *propListData = [NSPropertyListSerialization
 dataFromPropertyList:dictionary
 format:NSPropertyListBinaryFormat_v1_0
 errorDescription:nil];

[propListData writeToFile:filePath atomically:YES];

/* Unarchiving */
NSData *propListData = [NSData dataWithContentsOfFile:filePath];
NSPropertyListFormat format;
NSMutableDictionary *dictionary = [NSPropertyListSerialization
 propertyListFromData:propListData
 mutabilityOption:kCFPropertyListMutableContainersAndLeaves
 format:&format
 errorDescription:nil];

Thursday, February 11, 2010

JSON

• Tying general communication and data
storage together: JSON data transport
(JavaScript Object Notation)

• JSON was designed to emulate the same
general types and containers that most
languages use (NSArray, NSDictionary,
NSNumber, etc)

Thursday, February 11, 2010

JSON

• Sample
{
 “key” : “value”,
 “key2” : 10,
 “key3” : false,
 “key4” : null,
 “key5” : {
 “subkey1” : “value”,
 “subkey2” : “value2”
 },
 “key6” : [4, 5, 6, { “key” : “value” }, true]
}

Thursday, February 11, 2010

JSON

• A JSON library converts a JSON string into
a native data container (array/dictionary)

• So you can now exchange generic types
with a server

Thursday, February 11, 2010

JSON

• So make your native model classes support
transformation to and from generic data
containers

• You can then use highly reusable code to
either exchange those data containers with
a server or disk
Server <-(JSON)-> Generic Container [<-(Your code)-> Your Native Model]
Disk <-(archiver)-> Generic Container [<-(Your code)-> Your Native Model]

Thursday, February 11, 2010

