
CS 47
Beginning iPhone Application Development

Week 3: Navigating Through View Controllers

Thursday, January 28, 2010

Download This Keynote

• This keynote presentation is available on
the class website under the Week 3 syllabus
entry

http://cs47.fieldman.org

Thursday, January 28, 2010

http://cs47.fieldman.org
http://cs47.fieldman.org

Agenda

• Navigation Controllers

• TabBar Controllers

• Modal Controllers

• Autoresizing Views

Thursday, January 28, 2010

iPad
It’s a big iPod Touch

Thursday, January 28, 2010

Review

• MVC: Why do we need Controllers?

• They hold all of the application-specific
logic, binding the views and model.

• Remember the basic rules:

• Each screen performs one general task

• One view controller per screen

Thursday, January 28, 2010

Problem

• How do we navigate between screens
(view controllers)?

• UINavigationController

• UITabBarController

• presentModalViewController:animated:

Thursday, January 28, 2010

Alternative

• You don’t have to use these classes to
navigation between screens

• You can implement your own transitions
(fade, etc), but you need to create your
own view controller management flow

• Scary

Thursday, January 28, 2010

UINavigationController

• Manages left/right screen swipe animation

• Manages navigation bar along the top

• Manages toolbar along the bottom

• Manages lifecycle of child view controllers

Thursday, January 28, 2010

UINavigationController

• Uses a stack data structure to organize
view controllers

• Push new views onto the stack

• Pop views off of the stack when you are
done with them

• UINavigationController shows the user
whichever controller is “on top”

Thursday, January 28, 2010

UINavigationController
Typical flow:

Thursday, January 28, 2010

UINavigationController

• In the previous example, each screen is a
separate view controller

• When a new controller is pushed onto the
navigation stack, it animates in from the right

• When a controller is popped from the
navigation stack, it animates out to the right

• View controllers in the stack are retained by
the navigation controller

Thursday, January 28, 2010

UINavigationController

• The message to push/pop a view controller
onto/from the navigation stack is usually
called from the current view controller

• How does a view controller access the
navigation controller that contains it?

UINavigationController *myNavController = self.navigationController;

• Will be nil if not joined to a nav controller

Thursday, January 28, 2010

UINavigationController

• What do the push/pop calls look like?

UINavigationController *myNavController = self.navigationController;

/* Push new controller onto the stack */
UIViewController *vc = [[[UIViewController alloc] init] autorelease];
[myNavController pushViewController:vc animated:YES];

/* Pop controller off of the stack */
[myNavController popViewControllerAnimated:YES];

/* Pop to a certain controller */
UIViewController *someVC = [SomeViewControllerClass sharedInstance];
[myNavController popToViewController:someVC animated:YES];

/* Pop to the root view */
[myNavController popToRootViewControllerAnimated:YES];

Thursday, January 28, 2010

UINavigationController

• Pressing the back button in the navigation
bar performs an implicit
popViewControllerAnimated:

• Or you can call this explicitly in response
to an event

Thursday, January 28, 2010

UINavigationController

• Uses the navigationItem property of the
UIViewController to control how the
navigation bar is rendered by the
UINavigationController

• The navigationItem property is
automatically allocated when accessed, e.g.:

self.navigationItem.prompt = @”Hello”;

Thursday, January 28, 2010

UINavigationController

• The navigationItem property controls: Title,
prompt, left and right buttons, back buttons, and
custom titleViews.

• You don’t have to use the navigationItem member
if you don’t need special navigation behavior.

• At a minimum you only need to assign the title
property of your view controller, and the
UINavigationController will auto-generate the
navigationItem.

Thursday, January 28, 2010

UINavigationController
• Just like navigationItem, view

controllers can assign an array to their
toolbarItems member (an array of
UIBarButtonItems)

• This will cause the
UINavigationController to render a
small toolbar at the bottom of the view
UIBarButtonItem *bbi = [[[UIBarButtonItem alloc]
 initWithTitle:@”Info”
 style:UIBarButtonItemStyleBordered
 target:self action:@selector(info:)]
 autorelease];
self.toolBarItems = [NSArray arrayWithObject:bbi];

Thursday, January 28, 2010

UINavigationController

• What can a UIBarButtonItem look like?

Standard Toolbar Buttons

Custom Views

Standard System Icons

Thursday, January 28, 2010

UINavigationController

• The navigation bar and the toolbar can be
independently programmatically hidden or
shown

self.navigationController.navigationBarHidden = YES;
self.navigationController.toolBarHidden = YES;

• The space between the navigation bar and
the toolbar is where the currently displayed
view controller’s view is rendered

Thursday, January 28, 2010

UINavigationController

• Worth noting that there is a
UINavigationControllerDelegate protocol

• UINavigationController informs its delegate
when it will (and did) show a view
controller

Thursday, January 28, 2010

UITabBarController

• Manages transition between sibling views

• Manages tab bar along the bottom of the
screen

• Manages lifecycle of child view controllers

Thursday, January 28, 2010

UITabBarController

• Stores child controllers in a flat, sibling
structure

• Tab bar along the bottom allows
selection between children

Thursday, January 28, 2010

UITabBarController

• Each tab represents a single child view
controller

• No animations when switching between
views (immediate transition)

• Even though only one view controller is
“visible” at a time, all child view controllers
are retained and remain live in memory

Thursday, January 28, 2010

UITabBarController
• Assign controllers by setting the

viewControllers array

• Typical tab bars can support up to five tabs
on the screen. If you need to manage
more than five controllers, the tab bar will
automatically show the “More...” tab

• You can allow the user to customize the
tabs with the customizableViewControllers
property (to reconfigure tab layout)

Thursday, January 28, 2010

UITabBarController

• When you reassign the viewControllers
property, or call
setViewControllers:animated:, the tab bar
controller will release all of the view
controllers it was handling

• So it is important to note that you can’t
simply add a view controller to an existing
tab bar... all of the view controllers are
released, and then reassigned

Thursday, January 28, 2010

UITabBarController

• How do you configure the tab buttons?

• Similar to the UINavigationController

• Every UIViewController has a tabBarItem
variable that controls what its tab looks like

• You can initialize this value with a system
value, or a custom title+image

• You can assign a red badge value to a tab

Thursday, January 28, 2010

UITabBarController

• Rarely used, but useful to know: you can
access the parent UITabBarController of a
view controller through the
tabBarController property

UITabBarController *tbc = self.tabBarController;

• Will be nil if the view controller is not part
of a tab bar controller

Thursday, January 28, 2010

UITabBarController

• The UITabBarController also has a delegate
protocol to be notified when tabs are
selected or customized

Thursday, January 28, 2010

Modal View Controllers

• What if we just want to pop a view onto the
screen outside of the standard navigation
flow?

presentModalViewController:animated:
UIViewController *newVC = ...;
[self presentModalViewController:newVC animated:YES];

• The view controller is displayed above
whatever else is on the screen

Thursday, January 28, 2010

Modal View Controllers

• A view controller can access the parent
that summoned it with

self.parentViewController

and dismiss itself with

[self.parentViewController dismissModalViewControllerAnimated:YES];

Thursday, January 28, 2010

Modal View Controllers

• Modal view controllers are summoned
outside of the navigation flow, and are not
bound by the current hierarchy’s view
bounds

• They take up the entire screen unless
dismissed

• You can summon a UINavigationController
or UITabBarController if you want

Thursday, January 28, 2010

View Hierarchy

• Remember that UINavigationController
and UITabBarController are just subclasses
of the UIViewController class

• So you can embed tab bar controllers
inside of navigation controllers, and vice-
versa, just like any other view controller

Thursday, January 28, 2010

View Hierarchy

• Remember: these view controller
management subclasses split the screen
into two areas:

• The area reserved for their
navigation/tab/toolbar views

• The area remaining for the active
child view controller

Thursday, January 28, 2010

View Hierarchy

• Think about code reuse. We want our view
controller subclasses to be flexible in how
they are able to display in a view hierarchy

• Since we can embed these controllers to
any level inside each other, it’s feasible that
we could have a very small space to display
our actual content

• We also need to handle device rotation

Thursday, January 28, 2010

Rotation

• UINavigationController and
UITabBarController automatically support
rotation for their implicit views (toolbar,
tabbar, navbar)

• BUT: they will not rotate unless their
current child UIViewController supports
rotation

Thursday, January 28, 2010

Rotation

• So how we support rotate? Override the
shouldAutorotateToInterfaceOrientation:
message
- (void) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
{
 return YES;
 // this allows any kind of rotation
 // optionally, return YES/NO based on the desired orientation
}

• Default implementation only returns YES
for the standard portrait mode

Thursday, January 28, 2010

Rotation

• You can also override certain messages to
catch the fact that a rotation will or has
occured

willAnimateRotationToInterfaceOrientation:duration:
willRotateToInterfaceOrientation:duration:
didRotateFromInterfaceOrientation:

Thursday, January 28, 2010

Rotation

• When you rotate, the underlying
coordinate system changes, along with the
available space to display views

• e.g. a view that displayed in a 320x400 area
in portrait mode would display in a
480x240 area in landscape mode

Thursday, January 28, 2010

Resizing Views

• Ok, so how do we handle rotation, as well
as the potential to display child view
controllers in variable amounts of
embedded navigation?

• Two ways: Automatic and manual

Thursday, January 28, 2010

Resizing Views

• Automatic way: Autoresizing!

• We must enable the autoresizesSubviews
property of the UIViewController’s view
properly

self.view.autoresizesSubviews = YES;

• Remember: all our view controller’s content
is under the view property, so this allows that
top-level view to resize child elements

Thursday, January 28, 2010

Resizing Views

• Set the autoresizingMask property of the
child views you want to resize

myTableView.autoresizingMask = UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;

• Now myTableView will scale its width and
height dynamically if its parent view changes
size

Thursday, January 28, 2010

Resizing Views

• Sometimes you have a complex UI that has
many floating components

• You need to intercept the
willRotateToInterfaceOrientation:duration:
message and handle all of the child view
restructuring manually

Thursday, January 28, 2010

