
CS 47
Beginning iPhone Application Development

Week 2: App Fundamentals

Thursday, January 21, 2010

Office Hours Update

10-11am

Thursday, January 21, 2010

Class Schedule

• Reminder: No class on March 4

• Class is extended to March 25, but the last
class may not be in this room due to finals.
I will keep you updated.

Thursday, January 21, 2010

Agenda

• Basic app fundamentals

• Structure, initialization

• MVC Framework

• UIView and UIViewController basics

Thursday, January 21, 2010

App Fundamentals

• Every app has an info.plist (property list)
file

• Contains many basic global settings of an
application (e.g. version, name, etc)

Thursday, January 21, 2010

App Fundamentals
• The bundle icon filename is definied in the

info.plist file (normally icon.png). It must be a
57x57 PNG file

• The splash screen (when is shown before your
application is finished loading) is stored in
Default.png (case sensitive), and should be a
320x480 PNG file

• Both icon.png and Default.png should be in the
resources group of your project

Thursday, January 21, 2010

App Fundamentals

• Where does the app start?

• At a basic level, main! (Just like C)

• main.m, you will never need to change
this file.

• Calls UIApplicationMain

Thursday, January 21, 2010

App Fundamentals

• UIApplicationMain

• Sets up UIApplication and
UIApplicationDelegate objects

• nil params mean: use defaults
(default delegate is determined by
the info.plist default nib file).

• Sets up main event loop

Thursday, January 21, 2010

App Delegate
• The app delegate will be the first class you dive

into

• It handles all application lifecycle-related callbacks

• App starting, app ending, pausing due to the
idle timer, receiving push notifications, etc.

• Remember: this is a delegate. It does not subclass
UIApplication. It’s an arbitrary NSObject-based
class that conforms to the UIApplicationDelegate
protocol

Thursday, January 21, 2010

App Delegate
The entrance point that we care about:

- (void) applicationDidFinishLaunching:(UIApplication*)application

This is our only opportunity to initialize the
application! After this function we turn over
control to the event loop

Thursday, January 21, 2010

App Delegate
• Our responsibilities in applicationDidFinishLaunching:

• Initialize our data models

• Setup the main UIWindow

• Setup initial views and view controllers under the
window (initial interaction hierarchy)

• If our data model indicates that we are resuming a
session, we need to rebuild the app state to where
it was when interrupted.

• Do this as fast as possible or users will hate you

Thursday, January 21, 2010

I Thought This Was Cool
Application Lifecycle Diagram

Thursday, January 21, 2010

Event Loop

• The event loop looks something like this
(behind the scenes):
while(wait	
 for	
 event)	
 {

	
 	
 	
 	
 	
 	
 	
 	
 	
 NSAutoreleasePool	
 *pool	
 =	
 [[NSAutoreleasePool	
 alloc]	
 init];
	
 	
 	
 	
 	
 	
 	
 	
 	
 handle_event(event);
	
 	
 	
 	
 	
 	
 	
 	
 	
 [pool	
 drain];
	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 }

• This is why autorelease works - a new pool
is created for each event, and drained when
the event is handled

Thursday, January 21, 2010

Event Loop

• Notice: events are handled one at a time

• You need to handle events quickly or your
application will appear unresponsive

• Querying things that may not be available
immediately needs to be done
asynchronously or in another thread

Thursday, January 21, 2010

MVC

• The iPhone SDK is based on the model-
view-controller paradigm

Thursday, January 21, 2010

MVC

• Why?

• Reduces spaghetti code

• Abstraction! Easier to
compartmentalize areas of code in
your mind

• Separate reusable code (model, view)
from specific-purpose code (controller)

Thursday, January 21, 2010

Model

• Responsible for handling the organization
of you application’s data:

• Storage (database or flat file)

• Retrieval (from disk or remote system)

• Analysis (basic data analytic functions)

Thursday, January 21, 2010

Model

• Models can have very complex
implementations (e.g. caching policies,
complex databases, remote queries)

• But they should always have as simple an
interface as possible for your application
controllers

 Abstraction and reusable code!

Thursday, January 21, 2010

Views
• Represented by the UIView class

• Responsible for handling all I/O with the user

• Displaying information to the user

• Recognizing user input

• Views are controlled by (you guessed it)
controllers! Controllers tell them what to
display, and the views send input events back to
the controllers

Thursday, January 21, 2010

Views

• You should also strive for reusable code
when implementing views

• Your views should display specific things in
a specific manner, and have a good API to
affect that display - don’t pack too much
functionality into a single view class!

• Implement callbacks for general events
(e.g. touched, modified, etc)

Thursday, January 21, 2010

Views

• In the iPhone SDK, UIViews create a view
hierarchy

• There is a key window (ref: makeKeyAndVisible)
that is the top-level UIVIew in the application

• UIViews are attached to a parent UIView with
the addSubView: message

• UIViews can be removed with
removeFromSuperview:

Thursday, January 21, 2010

Views

• UIViews are displayed relative to their
parent UIView

• Position, transparency, touch-enabled state,
etc - all are relative to the parent UIView

• e.g. if the parent UIView is set to
alpha=0.5 (half blend), then all child
UIViews have their alphas halved

Thursday, January 21, 2010

Views
• Positioning example:

• C is a subview of B

• B is a subview of A

• Notice B and C both have
defined origins at 40,40

• But C is at absolute screen origin
80,80 since its origin is relative to B’s

• Note that width/height are always
absolute

Thursday, January 21, 2010

Views

• The view hierarchy is dynamic!

• The top-level UIWindow is always present,
but its children are continuously swapped
out as the user navigates around the
application

• These hierarchy transitions are handled by
UIViewControllers

Thursday, January 21, 2010

Controllers
• The controller is the glue logic that ties the model and views together

• Takes model info and displays it through views

• Takes input from views and affects the model

• This is where app-specific code goes! Controllers are generally
not reusable

• Deals with other event-driven callbacks like timers or asynchronous
data requests

• Controls the dynamic view hierarchy

• Controllers can have their own hierarchy (UINavigationControl,
UITabBarController, etc)

Thursday, January 21, 2010

Controllers

• Think of a typical iPhone application that
navigates through a sequence of distinct
screens.

• Generally, every screen in an application is
represented by its own subclassed
UIViewController

Thursday, January 21, 2010

Controllers

• One UIViewController per screen:

• Try to focus on one UI interaction
behavior per screen

• Presenting data to the user in an
expected and easy-to-use way

• Link to other screens to get to other
types of data/interactions

Thursday, January 21, 2010

Controllers

• There is no standard mechanism for a
UIViewController to interact with the
model.

• Completely up to your discretion and
heavily influenced by your model’s
implementation

Thursday, January 21, 2010

Controllers

• Controller -> View interaction is also
flexible, but there are some rules

• Every UIViewController has a view instance
variable
@property (retain) UIView view;

• If you are subclassing from
UIViewController, it is your responsibility to
initialize this instance variable

Thursday, January 21, 2010

Controllers

• The loadView: message is called if view is nil
when accessed (UIView *v = myViewController.view)

• Usually, in the same place that you initialize
the view instance member you also take the
time initialize and add the entire UIView
hierarchy of this controller to the view

• e.g. adding tables, buttons, labels, pickers,
etc

Thursday, January 21, 2010

Controllers

Window

UIViewController

view

Subviews

UIViewController

view

Subviews

Remember: [window addSubview:myViewController.view];
UIViewControllers themselves are NOT part of the view hierarchy!

Thursday, January 21, 2010

Controllers
• What if you want to animate between screens?

Use special controllers designed to manage
UIViewControllers

• You could use a UINavigationController, which
animates left-right transitions and handles the
navbar at the top of the screen

• Or a UITabBarController, which provides a
selection of UIViewControllers in its tab at the
bottom of the screen

Thursday, January 21, 2010

Controllers

• Or you can implement your own transition
style! Your only responsibility is removing
the active UIViewController’s view from the
hierarchy and bringing another one in.

Thursday, January 21, 2010

Controllers

• Why else is it important to manage
UIViewControllers?

• Remember that our view hierarchy only
retains the UIViewController’s view
member (during addSubview:)

• It does not implicitly retain the entire
UIViewController object!

Thursday, January 21, 2010

Controllers

• Use UIViewController manager classes to
help you manage UIViewController lifecycle

• UINavigationController and
UITabBarController will retain your
UIViewControllers until no longer needed

• Think about what this means:
UIViewControllers are created and
destroyed just like any other class

Thursday, January 21, 2010

Controllers

• Since they can be instantiated and
destroyed so often, you want to make sure
your UIViewController subclasses can
initialize and destruct quickly, without
memory leaks

• Yes, you can have global view controllers,
but it’s not ideal.

Thursday, January 21, 2010

Controllers

@interface MyViewController : UIViewController {
}
- (MyViewController*) sharedInstance;
@end

@implementation MyViewController

- (MyViewController*) sharedInstance {
 static MyViewController *singleton_instance = nil;
 if (!singleton_instance) {
 singleton_instance = [[MyViewController alloc] init];
 }
 return singleton_instance;
}

Global UIViewController (sharedInstance)

Thursday, January 21, 2010

Controllers

• Another note on UIViewController
managers: they call various lifecycle
messages as your controllers come in and
out of view:

- viewWillAppear:
- viewDidAppear:
- viewWillDisappear:
- viewDidDisappear:

Thursday, January 21, 2010

MVC Interaction

• Let’s recap how components of an MVC
system interact

Thursday, January 21, 2010

MVC Interaction

• As discussed before: This is easy... it’s up to
you!

• Generally the controller queries for
information from the model (pull)

• The model may use a protocol to inform
the controller that asynchronous info is
ready (push)

Controller-Model

Thursday, January 21, 2010

MVC Interaction

• This is tricky. There is a trade-off between
reusable and succinct code.

• It may be very easy/fast to assign entire
model objects to view instance variables in
order to pass in much information at once,
but this ties the view to the model

• Must be considered on a case-by-case
basis, no general rules

Model-View

Thursday, January 21, 2010

MVC Interaction

• Controllers setup views and tell them what
data to display

• Views tell controllers when user
interaction occurs

• Either through delegate methods, or
target-action

Controller-View

Thursday, January 21, 2010

MVC Interaction

• We know what delegates are. But what is
target-action?

• Every UIView has a list of events that it can
handle (UIControlEventXXX)

• When an event is detected by the view, it
looks up an internal target-action table to
see if anyone needs to be notified of that
event

Controller-View

Thursday, January 21, 2010

MVC Interaction
@implementation MyViewController

- (id) init {
 if (self = [super init]) {
 ...
 myButton = [UIButton buttonWithType:UIButtonTypeCustom];
 [myButton addTarget:self
 action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];
 [self.view addSubview:myButton];
 ...
 }
 return self;
}

- (void) buttonPressed:(id)sender {
 NSLog(@”Button pressed!!”);
}

@end

Controller-View

Thursday, January 21, 2010

Demo Time

Thursday, January 21, 2010

