
CS 47
Beginning iPhone Application Development

Thursday, January 14, 2010

Introductions
Who, why, which?

Thursday, January 14, 2010

Shameless Plug:
LoudTap

Thursday, January 14, 2010

Wifi Access
(If it works..)

• SSID: Stanford

• Username/password: csp47guest

Thursday, January 14, 2010

Expectations

• This is a programming class

• Prerequisites are important:

• C/C++/Java and OO proficiency

• Intel Mac running OSX 10.5+

Thursday, January 14, 2010

We’re Going to Learn

• How write iPhone applications

• How to run them in the simulator

• How to run them on the iPhone

• How to publish to the App Store

Thursday, January 14, 2010

No Class March 4

• We’ll probably extend the class an extra week; Need
to verify with CSP

Thursday, January 14, 2010

Grading

• Your grade will be based on your class project

• A = Wow!

• B = Ok, not bad

• C = You wrote two lines of code

• D = Did you even come to class?

Thursday, January 14, 2010

Homework

• There is no mandatory homework other than the class
project

• Highly recommended that you spend time reviewing
sample code and documentation on your own.

Thursday, January 14, 2010

Online Resources

• Class website: http://cs47.fieldman.org

• Discussion Group: http://groups.google.com/group/
stanfordcs47

• Developer Site: http://developer.apple.com

• My email: jason@fieldman.org

Thursday, January 14, 2010

http://cs47.fieldman.org
http://cs47.fieldman.org
http://groups.google.com/group/stanfordcs47
http://groups.google.com/group/stanfordcs47
http://groups.google.com/group/stanfordcs47
http://groups.google.com/group/stanfordcs47
http://developer.apple.com
http://developer.apple.com
mailto:jason@fieldman.org
mailto:jason@fieldman.org

Office Hours

• Saturdays from 11am - noon

• Come and talk about whatever

• Red Rock Cafe (2nd floor)

Thursday, January 14, 2010

Objective-C

Thursday, January 14, 2010

Buckle Up
You will probably need to review this later, on your own.

Thursday, January 14, 2010

Objective-C Overview

• All iPhone SDK programming is done in Objective-C

• Looks a lot like C/C++

• Object-oriented

• Header files (.h), source files (.m)

Thursday, January 14, 2010

Mixing in C/C++

• You must use Objective-C to interact with general
iPhone SDK elements

• But, you can use C and C++ code in an iPhone
application

• Data structures

• OpenGL applications

• C/C++ code executes faster (less overhead), but
generally not enough to avoid Objective-C

Thursday, January 14, 2010

What’s New in Obj-C?

Categories Used to add to classes without subclassing

Classes Define objects

Messages Send commands to objects

Properties Easy definition of accessors and mutators

Protocols Define methods that classes promise to respond to

@ Compiler directives

Thursday, January 14, 2010

What Does it Look Like?

- (void) updateLastAccessTimeForGroupId:(NSNumber*)groupId {

	 NSDictionary *accessDic = [NSDictionary dictionary];
	 NSString *groupKey = [groupId stringvalue];
	 ISPOGroup *group = [self groupWithId:groupId];
	 NSNumber *curTime =

[NSNumber numberWithLongLong:group.lastMessage.timestamp];

	 [accessDic setObject:curTime forKey:groupKey];
	 [[GroupsViewController sharedInstance] notifyGroupsUpdate];

}

Thursday, January 14, 2010

Messages

• a.k.a. Selectors, Methods, Functions

• Messages are how you interact with objects

• Once you understand how messages are defined and
called, you can read most Obj-C code

Thursday, January 14, 2010

Messages

• Message calls are defined by square braces:
 [receiver message];

• Real-life example:
 [window makeKeyAndVisible];

• Equivalent to:
 C++: window->makeKeyAndVisible();
 Java: window.makeKeyAndVisible();

Thursday, January 14, 2010

Messages

• Message calls can take arguments:
 [receiver message:argument];

• Real-life example:
 [textView setText:@”Hello World”];

• Equivalent to:
 textView.setText(“Hello World”);

Thursday, January 14, 2010

Messages

• Message calls can take multiple arguments:
 [receiver message:arg1 label2:arg2];

• Real-life example:
 [button setTitle:@”Press Me”
 forState:UIControlStateNormal];

• Equivalent to:
 button.setTitle(“Press Me”, UIControlStateNormal);

Thursday, January 14, 2010

Messages

• Message calls can return values:
 int output = [receiver message];
 int output = [receiver messageWithInput:arg1];

• Equivalent to:
 int output = receiver.messageWithInput(arg1);

Thursday, January 14, 2010

Messages

• Messages can nest
 [receiver message:[receiver2 message2]];

• Equivalent to:
 receiver.message(receiver2.message2());

Thursday, January 14, 2010

Messages

• Recap

 [receiver message];
 [receiver message:arg1];
 [receiver message:arg1 label2:arg2];

 int output = [receiver message:arg1];

 [receiver message:[receiver2 msg2]];

Thursday, January 14, 2010

Messages: Calling on nil

• Calling a message on a nil object just returns nil (0).

MyClass *myObject = nil;
[myObject callSomeMessage];
int result = [myObject getSomeValue];

• No compiler or run-time errors. Nothing happens for
the first message, and the second message returns nil

• You will see: this is awesome. Makes dealing with
model data much less complicated

Thursday, January 14, 2010

Messages: Accessors

• All class member variables are private

• They must be set/get using accessor messages:
 [myObject setVariable:value];
 value = [myObject variable];

• Or, more commonly, using dot syntax:
 myObject.variable = value;
 value = myObject.variable;

• Accessors must be explicitly defined or synthesized

Thursday, January 14, 2010

Message Declarations

• C/C++ Example:
int funcName(int arg1, char *arg2);

• In Objective-C:
- (int) funcName:(int)arg1 withArg:(char*)arg2;

• Would be called like this:
int arg1 = 6;
char *arg2 = “Hello World”;
int v = [myObject funcName:arg1 withArg:arg2];

Thursday, January 14, 2010

Messages: Class vs. Instance

• C++
MyClass::classFunction();
myObject->instanceFunction();

• Java
MyClass.classFunction();
myObject.instanceFunction();

• Objective-C
[MyClass classMessage];
[myObject instanceMessage];

Thursday, January 14, 2010

Messages: Class vs. Instance

• Declaring a class message:
+ (int) classMessage:(int)arg1;

• Declaring an instance message:
- (int) instanceMessage:(int)arg1;

• The only syntax difference is the +/-!

• + for class; - for instance

Thursday, January 14, 2010

Instantiating Objects

• Equivalent to C++:
 MyClass *myObject = new MyClass();

• Equivalent to Java:
 MyClass myObject = new MyClass();

Thursday, January 14, 2010

Instantiating Objects

Two general types of object instantiation

i) Create an autoreleased object:
 NSArray *array = [NSArray array];

ii) Create a retained object:
 NSArray *array = [[NSArray alloc] init];

Either style can take optional arguments:
NSNumber *n = [NSNumber numberWithInt:3];
NSNumber *n = [[NSNumber alloc] initWithInt:3];

Thursday, January 14, 2010

Memory Management

• C:
char *str = malloc(10);
free(str);

• C++:
MyClass *myObject = new MyClass();
delete myObject;

• Java:
MyClass myObject = new MyClass();

Thursday, January 14, 2010

Memory Management

• Objective-C uses a hybrid system. No automatic
garbage collection, but we get a reference counter API.

• When an object’s reference counter hits 0, its memory
is released

• The reference counter API is provided through the
NSObject and NSAutoreleasePool classes.

Thursday, January 14, 2010

Memory Management

Autoreleased Objects:

NSArray *array = [NSArray array];

---- SAME AS ----

NSArray *array = [NSArray alloc]; // ref +1
[array init];
[array autorelease]; // ref -1 at end of event

---- SAME AS ----

NSArray *array = [[[NSArray alloc] init] autorelease];

Thursday, January 14, 2010

Memory Management

NSArray *array = [NSArray array];
NSArray *array = [NSArray arrayWithCapacity:10];

NSString *string = [NSString string];
NSString *string = [NSString stringWithFormat:@”%d”, 4];

NSNumber *number = [NSNumber numberWithInt:4];
NSNumber *number = [NSNumber numberWithBool:YES];
NSNumber *number = [NSNumber numberWithFloat:1.1];

MyClass *myObject = [MyClass myAutoreleaseMessage:arg];

Thursday, January 14, 2010

Memory Management

Manually Managed Objects:

{
 // alloc: ref +1
 NSArray *array = [[NSArray alloc] init];
 ...
 ...
 [array release]; // release: ref -1 immediately
}

(Memory leak if not released!)

Thursday, January 14, 2010

Memory Management

• What if you want to keep an object persistent?

[myObject retain]; // ref +1

• What happens to this object?

{
 NSArray *array = [NSArray array];
 [array retain];
}

Thursday, January 14, 2010

Don’t Panic

Thursday, January 14, 2010

Classes

• Classes are defined by:

• Interface (.h)

• Implementation (.m)

• Similar to C++, with separate class declaration (.h) and
implementation (.cpp) files.

Thursday, January 14, 2010

Classes

• Example class interface

@interface MyClass : NSObject {
 NSString *myString;
 int myInt;
}
@end

Thursday, January 14, 2010

Classes

• Let’s add getters to our class

@interface MyClass : NSObject {
 NSString *myString;
 int myInt;
}
- (NSString*) myString;
- (int) myInt;
@end

Thursday, January 14, 2010

Classes

• Let’s add setters

@interface MyClass : NSObject {
 NSString *mystring;
 int myInt;
}
- (NSString*) myString;
- (int) myInt;

- (void) setMyString:(NSString*)newString;
- (void) setMyInt:(int)newInt;
@end

Thursday, January 14, 2010

Classes

• Now let’s implement the getters

@implementation MyClass

- (NSString*) myString {
 return myString;
}

- (int) myInt {
 return myInt;
}

@end

Thursday, January 14, 2010

Classes

• Now let’s implement the setters

@implementation MyClass

- (void) setMyString:(NSString*)newString {
 [myString autorelease];
 myString = [newString retain];
}

- (void) setMyInt:(int)newInt {
 myInt = newInt;
}

@end

Thursday, January 14, 2010

Classes

• What if our setMyString implementation looked like
this?

- (void) setMyString:(NSString*)newString {
 myString = newString;
}

Thursday, January 14, 2010

Classes

• Classes can implement any message, not just accessors

@interface MyClass : NSObject {
}
- (void) doSomethingCrazy:(int)arg1;
- (NSString*) getSomeString;
@end

• You just need to add their implementations to the
@implementation section

Thursday, January 14, 2010

Classes
- (id) init {
 if (self = [super init]) {
 [self setMyString:@”Hello World”];
 [self setMyInt:3];
 }
 return self;
}

- (void) dealloc {
 [myString release];
 [super dealloc];
}

Thursday, January 14, 2010

Classes

• Using properties in an interface

@interface MyClass : NSObject {
 NSString *mystring;
 int myInt;
}

@property (nonatomic, retain) NSString *myString;
@property (nonatomic, assign) int myInt;

@end

• Activates the “dot syntax” accessors for that member

Thursday, January 14, 2010

Classes

• Implementating properties

@implementation MyClass

@synthesize myString;
@synthesize myInt;

@end

• Generates setters/getters (but you can override!)

• Synthesize *DOES NOT* implement the destructor in
dealloc

Thursday, January 14, 2010

Classes

• Example of properties being accessed through dot
syntax

...
MyClass *myObject = [[[MyClass alloc] init] autorelease];
myObject.myString = @”Test”;
myObject.myInt = 10;
...

Thursday, January 14, 2010

Classes

• Setters aren’t restricted to just setting values. Often
you will want to do more!

- (void) setMyString:(NSString*)newString {
 [myString release];
 myString = [newString retain];
 myInt = [myString intValue];
}
...
MyClass *myObject = [[[MyClass alloc] init] autorelease];
myObject.myString = @”10”; //also sets myInt!

Thursday, January 14, 2010

Delegates/Protocols

• Similar to interfaces in Java (i.e. “X implements Y”).

• Allow you to encapsulate a complex class that you do
not want to subclass.

• Allows a class to interact with other objects by
querying them with messages, rather than requiring
messages to being queried on them.

• Example: HTTP connection. Set the delegate of the
connection object to receive a notice when data is
complete, rather than having to poll the connection

Thursday, January 14, 2010

Protocols

• Protocols look like this

@protocol MyClassDelegate <NSObject>
@required
- (void) myClass:(MyClass*)myObj sawEvent:(int)eId;
@optional
- (NSString*) tagForMyClass:(MyClass*)myObj;
@end

• Anything that implements this protocol is contractually
bound to implement the required messages!

Thursday, January 14, 2010

Protocols

• How do you indicate that you implement a protocol?

@interface MyOtherClass : NSObject <MyClassDelegate> {
}

@end

• You do not need to add prototypes for the delegate
messages in the interface, since it is implied

• You must now implement the MyClassDelegate
messages in the implementation section of this class

Thursday, January 14, 2010

Delegates

• How to add a delegate to a class

@interface MyClass : NSObject {
 id<MyClassDelegate> myDelegate;
}

@property (retain) id<MyClassDelegate> myDelegate;

@end

Thursday, January 14, 2010

Delegates

• You can now pass delegate messages to your delegate
member variable

...
[myDelegate myClass:self sawEvent:SoAndSoEventId];
NSString *myTag = [myDelegate tagForMyClass:self];
...

• If myDelegate isn’t set yet, it’s just nil. The messages
have no effect and return nil

Thursday, January 14, 2010

Phew.

Thursday, January 14, 2010

